MARKETING
US businesses’ CX scores down from last year’s all-time high
U.S. companies have taken their eyes off the consumer and the result is worse customer experience, according to a new report.
The Forrester study found CX, which hit all-time rating highs last year, is now back down to pre-pandemic levels. The overall CX Index score fell from 72 in 2021 to 71.3 in 2022 on a 100-point scale. The company says that while this may seem small, it is “statistically significant and meaningful in the real world because [it reflects] changes in CX quality for large numbers of customers.”
Read next: How AI lets marketers create human-centric CX at scale
The cost. According to Forrester research, a one-point improvement in CX Index score can be worth $22.5 billion more in assets under management for the average investment firm and $1.2 billion in revenue for the average mass-market auto manufacturer.
Across the board problems. The 2022 U.S. Customer Experience Benchmark report examined 13 business sectors. The average score dropped in 10 industries and rose for only three. That’s a reversal from last year, when three fell and nine rose. These industry-level losses leave nine industries with average scores lower than or essentially equal to their 2020 levels.
Who fell the furthest. Not surprisingly, two industries hit the hardest by labor shortages did the worst. The hotel industry average was 74.5 in 2020, now it’s 71.2. Similarly, the airline industry had a not-great 67.5 score in 2020 and is down 2.3 points this year.
The report also found:
- CX quality fell for 19% of brands this year, about twice as many as the 10% of brands that gained points. Further, this year’s brand-level losses were larger than the gains: The average loss was 3.8 points, the average gain was 3.1 points. Six brands lost between 5 and 10 points, while no brand gained 5 or more points.
- Digital-only CX has gotten worse, dropping 0.4 points from 2021 to 69.3. As a result the quality of digital-only CX now trails physical-only CX by 2.5 points. Digital-only CX worsened for 10 industries; for six industries, this is the second loss in two years. The mass-market auto manufacturer industry had the biggest digital-only drop, going from 71.7 in 2021 to 69.2 this year.
- Customers’ perception that a given brands’ values align with their own has fallen to pre-2020 levels. This year only 45% of customers across the 12 verticals studied perceived value alignment, a 4-percentage-point drop from 2021. What’s more, every vertical peaked in 2021 and backslid in 2022.
- Experiences are neither easier nor more effective. On average, 70% of customers said their experiences with brands were either easy or effective, 1% lower than the year before.
Why we care. Best case scenario is that CX peaked in a year when most consumers were behaving the same way. Last year saw people working from home and ordering on-line. Now, for some reason, businesses want workers back in the office (where multiple studies show they are less productive) and people are back to behaving in many different ways. Forrester says its because businesses lost their customer focus. Might be both, actually.
Get the daily newsletter digital marketers rely on.
MARKETING
YouTube Ad Specs, Sizes, and Examples [2024 Update]
Introduction
With billions of users each month, YouTube is the world’s second largest search engine and top website for video content. This makes it a great place for advertising. To succeed, advertisers need to follow the correct YouTube ad specifications. These rules help your ad reach more viewers, increasing the chance of gaining new customers and boosting brand awareness.
Types of YouTube Ads
Video Ads
- Description: These play before, during, or after a YouTube video on computers or mobile devices.
- Types:
- In-stream ads: Can be skippable or non-skippable.
- Bumper ads: Non-skippable, short ads that play before, during, or after a video.
Display Ads
- Description: These appear in different spots on YouTube and usually use text or static images.
- Note: YouTube does not support display image ads directly on its app, but these can be targeted to YouTube.com through Google Display Network (GDN).
Companion Banners
- Description: Appears to the right of the YouTube player on desktop.
- Requirement: Must be purchased alongside In-stream ads, Bumper ads, or In-feed ads.
In-feed Ads
- Description: Resemble videos with images, headlines, and text. They link to a public or unlisted YouTube video.
Outstream Ads
- Description: Mobile-only video ads that play outside of YouTube, on websites and apps within the Google video partner network.
Masthead Ads
- Description: Premium, high-visibility banner ads displayed at the top of the YouTube homepage for both desktop and mobile users.
YouTube Ad Specs by Type
Skippable In-stream Video Ads
- Placement: Before, during, or after a YouTube video.
- Resolution:
- Horizontal: 1920 x 1080px
- Vertical: 1080 x 1920px
- Square: 1080 x 1080px
- Aspect Ratio:
- Horizontal: 16:9
- Vertical: 9:16
- Square: 1:1
- Length:
- Awareness: 15-20 seconds
- Consideration: 2-3 minutes
- Action: 15-20 seconds
Non-skippable In-stream Video Ads
- Description: Must be watched completely before the main video.
- Length: 15 seconds (or 20 seconds in certain markets).
- Resolution:
- Horizontal: 1920 x 1080px
- Vertical: 1080 x 1920px
- Square: 1080 x 1080px
- Aspect Ratio:
- Horizontal: 16:9
- Vertical: 9:16
- Square: 1:1
Bumper Ads
- Length: Maximum 6 seconds.
- File Format: MP4, Quicktime, AVI, ASF, Windows Media, or MPEG.
- Resolution:
- Horizontal: 640 x 360px
- Vertical: 480 x 360px
In-feed Ads
- Description: Show alongside YouTube content, like search results or the Home feed.
- Resolution:
- Horizontal: 1920 x 1080px
- Vertical: 1080 x 1920px
- Square: 1080 x 1080px
- Aspect Ratio:
- Horizontal: 16:9
- Square: 1:1
- Length:
- Awareness: 15-20 seconds
- Consideration: 2-3 minutes
- Headline/Description:
- Headline: Up to 2 lines, 40 characters per line
- Description: Up to 2 lines, 35 characters per line
Display Ads
- Description: Static images or animated media that appear on YouTube next to video suggestions, in search results, or on the homepage.
- Image Size: 300×60 pixels.
- File Type: GIF, JPG, PNG.
- File Size: Max 150KB.
- Max Animation Length: 30 seconds.
Outstream Ads
- Description: Mobile-only video ads that appear on websites and apps within the Google video partner network, not on YouTube itself.
- Logo Specs:
- Square: 1:1 (200 x 200px).
- File Type: JPG, GIF, PNG.
- Max Size: 200KB.
Masthead Ads
- Description: High-visibility ads at the top of the YouTube homepage.
- Resolution: 1920 x 1080 or higher.
- File Type: JPG or PNG (without transparency).
Conclusion
YouTube offers a variety of ad formats to reach audiences effectively in 2024. Whether you want to build brand awareness, drive conversions, or target specific demographics, YouTube provides a dynamic platform for your advertising needs. Always follow Google’s advertising policies and the technical ad specs to ensure your ads perform their best. Ready to start using YouTube ads? Contact us today to get started!
MARKETING
Why We Are Always ‘Clicking to Buy’, According to Psychologists
Amazon pillows.
MARKETING
A deeper dive into data, personalization and Copilots
Salesforce launched a collection of new, generative AI-related products at Connections in Chicago this week. They included new Einstein Copilots for marketers and merchants and Einstein Personalization.
To better understand, not only the potential impact of the new products, but the evolving Salesforce architecture, we sat down with Bobby Jania, CMO, Marketing Cloud.
Dig deeper: Salesforce piles on the Einstein Copilots
Salesforce’s evolving architecture
It’s hard to deny that Salesforce likes coming up with new names for platforms and products (what happened to Customer 360?) and this can sometimes make the observer wonder if something is brand new, or old but with a brand new name. In particular, what exactly is Einstein 1 and how is it related to Salesforce Data Cloud?
“Data Cloud is built on the Einstein 1 platform,” Jania explained. “The Einstein 1 platform is our entire Salesforce platform and that includes products like Sales Cloud, Service Cloud — that it includes the original idea of Salesforce not just being in the cloud, but being multi-tenancy.”
Data Cloud — not an acquisition, of course — was built natively on that platform. It was the first product built on Hyperforce, Salesforce’s new cloud infrastructure architecture. “Since Data Cloud was on what we now call the Einstein 1 platform from Day One, it has always natively connected to, and been able to read anything in Sales Cloud, Service Cloud [and so on]. On top of that, we can now bring in, not only structured but unstructured data.”
That’s a significant progression from the position, several years ago, when Salesforce had stitched together a platform around various acquisitions (ExactTarget, for example) that didn’t necessarily talk to each other.
“At times, what we would do is have a kind of behind-the-scenes flow where data from one product could be moved into another product,” said Jania, “but in many of those cases the data would then be in both, whereas now the data is in Data Cloud. Tableau will run natively off Data Cloud; Commerce Cloud, Service Cloud, Marketing Cloud — they’re all going to the same operational customer profile.” They’re not copying the data from Data Cloud, Jania confirmed.
Another thing to know is tit’s possible for Salesforce customers to import their own datasets into Data Cloud. “We wanted to create a federated data model,” said Jania. “If you’re using Snowflake, for example, we more or less virtually sit on your data lake. The value we add is that we will look at all your data and help you form these operational customer profiles.”
Let’s learn more about Einstein Copilot
“Copilot means that I have an assistant with me in the tool where I need to be working that contextually knows what I am trying to do and helps me at every step of the process,” Jania said.
For marketers, this might begin with a campaign brief developed with Copilot’s assistance, the identification of an audience based on the brief, and then the development of email or other content. “What’s really cool is the idea of Einstein Studio where our customers will create actions [for Copilot] that we hadn’t even thought about.”
Here’s a key insight (back to nomenclature). We reported on Copilot for markets, Copilot for merchants, Copilot for shoppers. It turns out, however, that there is just one Copilot, Einstein Copilot, and these are use cases. “There’s just one Copilot, we just add these for a little clarity; we’re going to talk about marketing use cases, about shoppers’ use cases. These are actions for the marketing use cases we built out of the box; you can build your own.”
It’s surely going to take a little time for marketers to learn to work easily with Copilot. “There’s always time for adoption,” Jania agreed. “What is directly connected with this is, this is my ninth Connections and this one has the most hands-on training that I’ve seen since 2014 — and a lot of that is getting people using Data Cloud, using these tools rather than just being given a demo.”
What’s new about Einstein Personalization
Salesforce Einstein has been around since 2016 and many of the use cases seem to have involved personalization in various forms. What’s new?
“Einstein Personalization is a real-time decision engine and it’s going to choose next-best-action, next-best-offer. What is new is that it’s a service now that runs natively on top of Data Cloud.” A lot of real-time decision engines need their own set of data that might actually be a subset of data. “Einstein Personalization is going to look holistically at a customer and recommend a next-best-action that could be natively surfaced in Service Cloud, Sales Cloud or Marketing Cloud.”
Finally, trust
One feature of the presentations at Connections was the reassurance that, although public LLMs like ChatGPT could be selected for application to customer data, none of that data would be retained by the LLMs. Is this just a matter of written agreements? No, not just that, said Jania.
“In the Einstein Trust Layer, all of the data, when it connects to an LLM, runs through our gateway. If there was a prompt that had personally identifiable information — a credit card number, an email address — at a mimum, all that is stripped out. The LLMs do not store the output; we store the output for auditing back in Salesforce. Any output that comes back through our gateway is logged in our system; it runs through a toxicity model; and only at the end do we put PII data back into the answer. There are real pieces beyond a handshake that this data is safe.”
-
SEARCHENGINES7 days ago
Daily Search Forum Recap: September 10, 2024
-
SEARCHENGINES6 days ago
Daily Search Forum Recap: September 11, 2024
-
WORDPRESS6 days ago
14 Tools for Creating and Selling Digital Products (Expert Pick)
-
SEARCHENGINES5 days ago
Daily Search Forum Recap: September 12, 2024
-
WORDPRESS6 days ago
The Secrets of One of the World’s Largest Ad-Free Blogs – WordPress.com News
-
GOOGLE5 days ago
Google Warns About Misuse of Its Indexing API
-
SEO6 days ago
Assigning The Right Conversion Values To Make Value-Based Bidding Work For Lead Gen
-
WORDPRESS4 days ago
How to Connect Your WordPress Site to the Fediverse – WordPress.com News
You must be logged in to post a comment Login