Connect with us

MARKETING

Return on investment is missing in action

Published

on

Return on investment is missing in action

The marketing team spent its budget dollars wisely. But management can’t see the results.

When business spends money on anything, it expects to see a “return on investment”— a lift that has some correlation with the spend. This would be fine if marketing was a machine, with fixed, measurable inputs and outputs. Except we are living in “the Information Age”, so Industrial Age accounting will fail to notice what is really going on.

Marketing often appears as a cost sink on the balance sheet. It’s relationship to output is not always obvious. Kathleen Schaub, marketing management and organization strategist, and Mark Stouse, chairman of Proof Data Corporation, want to shed some light on this situation. Schaub focuses on how complexity affects marketing, while Stouse takes a deeper look at analytics. These two angles converge on a common point: the old way of measuring marketing ROI misses a lot, providing inaccurate guidance for marketing efforts.

Schaub goes into further detail in her paper “Marketing Is Not a Vending Machine.”  “Markets are what science calls complex adaptive systems. The interactions of many independent agents, both individuals and enterprises – customers, companies, influencers, partners, and governments, produce feedback loops that cause situations to constantly change. Change produces many unknowns.” Schaub wrote.

Those feedback loops have speeded up, thanks to globalization and digitalization. “There’s no breathing room,” Schaub told us, so marketers have a hard time keeping up. It is only in the past several decades that data and computers have finally provided a way to see this happening. “Now that things have speeded up, we can see these patterns in the data.”

“ROI for marketing is not there.” Schaub said. “Never has been. Never will be. Not in the old standard sense.” 

The only thing certain is uncertainty

“The big shift, which is probably permanent, started with COVID,” Stouse said. “The feedback loops really matter,” Stouse continued. Now you needed to have a value goal, a route to value, and the ability to track your effort, much like a GPS, he said. This is running concurrently with the disintegration of third-party data.

To get a more realistic picture, some marketers are returning to an older technique: marketing mix modeling (MMM). This technique is more common among larger Fortune 500 companies, Stouse said. But it was too balky to make operational — too slow, too manual, too expensive, too hard to scale, and hard for people to understand.

Today, MMM is getting a second look. “Automation has eliminated many of these challenges to operationalizing analytics.” Stouse said. “MMM is rooted in multi-variable regression analytics, which is the fundamental underpinning of the scientific method.” And this is mainstream and well understood, he added.

Any change in analytics will also trigger a change in organization. “You cannot continue to have the same kind of rigid, command and control, hierarchical, siloed kind of organization and have these very rigid waterfall business processes. They are just too slow, too inhuman, they are barren of information, because information cannot flow to where it is needed,” Schaub said.

“I kept asking CMOs and CEOS, ‘can you do ROI yet?’” Schaub recalled. “The answer was always ‘no’”. They had workarounds, like attribution, and pushing marketing “down funnel” to help sales, “but at the end of the day, people have to give up the fantasy that it [marketing] can ever be completely predictable.” Schaub said.

People believe in cause-and-effect, that with enough data, the right strategy, the right work processes, or enough efficiency, they could figure things out, Schaub said. COVID crashed that belief system. To rebuild, analytics will help, but organizations will also have to re-align so that they can work better “in conditions that need our response as opposed to our ability to predict.” she said.

If you can’t predict, project

Businesses can still draft scenarios and craft projections, laying down an outline of how things are expected to happen. “Then you have to ‘fast follow’ as the future becomes the present, with latent, low-level re-calculation, so you can find out where you are relative to that projection.” Stouse explained.

Here Stouse compared marketing analytics with GPS. The destination is not a fixed ROI point reached by a certain date. Instead, the goal can be reached despite changes in traffic and necessary detours. Just as the GPS recalculates, the decisionmaker can also recalculate the market spend or rescale the project to better accommodate reality.

Like GPS, you need a driver who can make decisions and change course as needed. Here the marketer is at the wheel, advised by analytics, able to react to circumstances, seize opportunity, or reduce risks as needed, Schaub explained. This is need not be a single person, but will often be an agile, multi-disciplinary team which is quicker, smarter, more innovative, and which can foster human problem solving. “You build for the long term, but the only time you can act is now,” Schaub said.

Learning to live with speed

The speed of data, and feedback loops has increased tremendously, changing the digital landscape more quickly than a company’s capacity to comprehend and keep up.

Here the concept of the OODA Loop — Observe, Orient, Decide, Act — becomes relevant. The concept was coined by fighter pilot Col. John Boyd, who proved that if you can do this faster than your competitor, he will be stuck reacting to your last action as you execute your next move. “This is increasingly where business is and increasingly where marketing is,” Stouse said. “You have all these variables, and these variables are moving at a speed that the unaided human brain can’t track.”

“Being able to use software…compresses the OODA loop.” Stouse gave a real life example where his firm is working with a technology company. “This is a huge B2B enterprise tech company. It’s a long cycle business who has used MMM for six or seven years in a very traditional, conventional way.” he said. “[B]y the time the analytics reaches the marketing people, it’s so out of date that the prediction no longer matters…They don’t need to change the math. They need to change the speed at which it is all computed.”

Read next: More about leveraging the OODA Loop

As Schaub noted in her paper, a marketing department may have to track up to 30 variables to provide the insight needed to understand what present conditions are like. But it may not take as long as one might expect to pull them all together. Data automation can shorten the time it takes to weave insights from data streams.

“I don’t mean to imply that any of this is easy,” Stouse continued. “But it has significantly improved.” One can use tool sets like Supermetrics  or Datorama (both Proof partners) to gather data streams, sanitize, cleanse and harmonize them, and then pipe the data into platforms like Proof or Tableau.

“We can go into a customer that has data but doesn’t have any analytical history at all…and the first 10 models can be up and running in less than 60 days.” Stouse said. Go to a traditional consultant doing MMM, and “it would be 10 to 12 months before you saw your first model.”

In the second part of this two part article learn why predictability and control are out, while perception and reaction are in.


About The Author

Return on investment is missing in action
William Terdoslavich is a freelance writer with a long background covering information technology. Prior to writing for Martech, he also covered digital marketing for DMN. A seasoned generalist, William covered employment in the IT industry for Insights.Dice.com, big data for Information Week, and software-as-a-service for SaaSintheEnterprise.com. He also worked as a features editor for Mobile Computing and Communication, as well as feature section editor for CRN, where he had to deal with 20 to 30 different tech topics over the course of an editorial year. Ironically, it is the human factor that draws William into writing about technology. No matter how much people try to organize and control information, it never quite works out the way they want to.


Source link

Keep an eye on what we are doing
Be the first to get latest updates and exclusive content straight to your email inbox.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address

MARKETING

YouTube Ad Specs, Sizes, and Examples [2024 Update]

Published

on

YouTube Ad Specs, Sizes, and Examples

Introduction

With billions of users each month, YouTube is the world’s second largest search engine and top website for video content. This makes it a great place for advertising. To succeed, advertisers need to follow the correct YouTube ad specifications. These rules help your ad reach more viewers, increasing the chance of gaining new customers and boosting brand awareness.

Types of YouTube Ads

Video Ads

  • Description: These play before, during, or after a YouTube video on computers or mobile devices.
  • Types:
    • In-stream ads: Can be skippable or non-skippable.
    • Bumper ads: Non-skippable, short ads that play before, during, or after a video.

Display Ads

  • Description: These appear in different spots on YouTube and usually use text or static images.
  • Note: YouTube does not support display image ads directly on its app, but these can be targeted to YouTube.com through Google Display Network (GDN).

Companion Banners

  • Description: Appears to the right of the YouTube player on desktop.
  • Requirement: Must be purchased alongside In-stream ads, Bumper ads, or In-feed ads.

In-feed Ads

  • Description: Resemble videos with images, headlines, and text. They link to a public or unlisted YouTube video.

Outstream Ads

  • Description: Mobile-only video ads that play outside of YouTube, on websites and apps within the Google video partner network.

Masthead Ads

  • Description: Premium, high-visibility banner ads displayed at the top of the YouTube homepage for both desktop and mobile users.

YouTube Ad Specs by Type

Skippable In-stream Video Ads

  • Placement: Before, during, or after a YouTube video.
  • Resolution:
    • Horizontal: 1920 x 1080px
    • Vertical: 1080 x 1920px
    • Square: 1080 x 1080px
  • Aspect Ratio:
    • Horizontal: 16:9
    • Vertical: 9:16
    • Square: 1:1
  • Length:
    • Awareness: 15-20 seconds
    • Consideration: 2-3 minutes
    • Action: 15-20 seconds

Non-skippable In-stream Video Ads

  • Description: Must be watched completely before the main video.
  • Length: 15 seconds (or 20 seconds in certain markets).
  • Resolution:
    • Horizontal: 1920 x 1080px
    • Vertical: 1080 x 1920px
    • Square: 1080 x 1080px
  • Aspect Ratio:
    • Horizontal: 16:9
    • Vertical: 9:16
    • Square: 1:1

Bumper Ads

  • Length: Maximum 6 seconds.
  • File Format: MP4, Quicktime, AVI, ASF, Windows Media, or MPEG.
  • Resolution:
    • Horizontal: 640 x 360px
    • Vertical: 480 x 360px

In-feed Ads

  • Description: Show alongside YouTube content, like search results or the Home feed.
  • Resolution:
    • Horizontal: 1920 x 1080px
    • Vertical: 1080 x 1920px
    • Square: 1080 x 1080px
  • Aspect Ratio:
    • Horizontal: 16:9
    • Square: 1:1
  • Length:
    • Awareness: 15-20 seconds
    • Consideration: 2-3 minutes
  • Headline/Description:
    • Headline: Up to 2 lines, 40 characters per line
    • Description: Up to 2 lines, 35 characters per line

Display Ads

  • Description: Static images or animated media that appear on YouTube next to video suggestions, in search results, or on the homepage.
  • Image Size: 300×60 pixels.
  • File Type: GIF, JPG, PNG.
  • File Size: Max 150KB.
  • Max Animation Length: 30 seconds.

Outstream Ads

  • Description: Mobile-only video ads that appear on websites and apps within the Google video partner network, not on YouTube itself.
  • Logo Specs:
    • Square: 1:1 (200 x 200px).
    • File Type: JPG, GIF, PNG.
    • Max Size: 200KB.

Masthead Ads

  • Description: High-visibility ads at the top of the YouTube homepage.
  • Resolution: 1920 x 1080 or higher.
  • File Type: JPG or PNG (without transparency).

Conclusion

YouTube offers a variety of ad formats to reach audiences effectively in 2024. Whether you want to build brand awareness, drive conversions, or target specific demographics, YouTube provides a dynamic platform for your advertising needs. Always follow Google’s advertising policies and the technical ad specs to ensure your ads perform their best. Ready to start using YouTube ads? Contact us today to get started!

Keep an eye on what we are doing
Be the first to get latest updates and exclusive content straight to your email inbox.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
Continue Reading

MARKETING

Why We Are Always ‘Clicking to Buy’, According to Psychologists

Published

on

Why We Are Always 'Clicking to Buy', According to Psychologists

Amazon pillows.

(more…)

Keep an eye on what we are doing
Be the first to get latest updates and exclusive content straight to your email inbox.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
Continue Reading

MARKETING

A deeper dive into data, personalization and Copilots

Published

on

A deeper dive into data, personalization and Copilots

Salesforce launched a collection of new, generative AI-related products at Connections in Chicago this week. They included new Einstein Copilots for marketers and merchants and Einstein Personalization.

To better understand, not only the potential impact of the new products, but the evolving Salesforce architecture, we sat down with Bobby Jania, CMO, Marketing Cloud.

Dig deeper: Salesforce piles on the Einstein Copilots

Salesforce’s evolving architecture

It’s hard to deny that Salesforce likes coming up with new names for platforms and products (what happened to Customer 360?) and this can sometimes make the observer wonder if something is brand new, or old but with a brand new name. In particular, what exactly is Einstein 1 and how is it related to Salesforce Data Cloud?

“Data Cloud is built on the Einstein 1 platform,” Jania explained. “The Einstein 1 platform is our entire Salesforce platform and that includes products like Sales Cloud, Service Cloud — that it includes the original idea of Salesforce not just being in the cloud, but being multi-tenancy.”

Data Cloud — not an acquisition, of course — was built natively on that platform. It was the first product built on Hyperforce, Salesforce’s new cloud infrastructure architecture. “Since Data Cloud was on what we now call the Einstein 1 platform from Day One, it has always natively connected to, and been able to read anything in Sales Cloud, Service Cloud [and so on]. On top of that, we can now bring in, not only structured but unstructured data.”

That’s a significant progression from the position, several years ago, when Salesforce had stitched together a platform around various acquisitions (ExactTarget, for example) that didn’t necessarily talk to each other.

“At times, what we would do is have a kind of behind-the-scenes flow where data from one product could be moved into another product,” said Jania, “but in many of those cases the data would then be in both, whereas now the data is in Data Cloud. Tableau will run natively off Data Cloud; Commerce Cloud, Service Cloud, Marketing Cloud — they’re all going to the same operational customer profile.” They’re not copying the data from Data Cloud, Jania confirmed.

Another thing to know is tit’s possible for Salesforce customers to import their own datasets into Data Cloud. “We wanted to create a federated data model,” said Jania. “If you’re using Snowflake, for example, we more or less virtually sit on your data lake. The value we add is that we will look at all your data and help you form these operational customer profiles.”

Let’s learn more about Einstein Copilot

“Copilot means that I have an assistant with me in the tool where I need to be working that contextually knows what I am trying to do and helps me at every step of the process,” Jania said.

For marketers, this might begin with a campaign brief developed with Copilot’s assistance, the identification of an audience based on the brief, and then the development of email or other content. “What’s really cool is the idea of Einstein Studio where our customers will create actions [for Copilot] that we hadn’t even thought about.”

Here’s a key insight (back to nomenclature). We reported on Copilot for markets, Copilot for merchants, Copilot for shoppers. It turns out, however, that there is just one Copilot, Einstein Copilot, and these are use cases. “There’s just one Copilot, we just add these for a little clarity; we’re going to talk about marketing use cases, about shoppers’ use cases. These are actions for the marketing use cases we built out of the box; you can build your own.”

It’s surely going to take a little time for marketers to learn to work easily with Copilot. “There’s always time for adoption,” Jania agreed. “What is directly connected with this is, this is my ninth Connections and this one has the most hands-on training that I’ve seen since 2014 — and a lot of that is getting people using Data Cloud, using these tools rather than just being given a demo.”

What’s new about Einstein Personalization

Salesforce Einstein has been around since 2016 and many of the use cases seem to have involved personalization in various forms. What’s new?

“Einstein Personalization is a real-time decision engine and it’s going to choose next-best-action, next-best-offer. What is new is that it’s a service now that runs natively on top of Data Cloud.” A lot of real-time decision engines need their own set of data that might actually be a subset of data. “Einstein Personalization is going to look holistically at a customer and recommend a next-best-action that could be natively surfaced in Service Cloud, Sales Cloud or Marketing Cloud.”

Finally, trust

One feature of the presentations at Connections was the reassurance that, although public LLMs like ChatGPT could be selected for application to customer data, none of that data would be retained by the LLMs. Is this just a matter of written agreements? No, not just that, said Jania.

“In the Einstein Trust Layer, all of the data, when it connects to an LLM, runs through our gateway. If there was a prompt that had personally identifiable information — a credit card number, an email address — at a mimum, all that is stripped out. The LLMs do not store the output; we store the output for auditing back in Salesforce. Any output that comes back through our gateway is logged in our system; it runs through a toxicity model; and only at the end do we put PII data back into the answer. There are real pieces beyond a handshake that this data is safe.”

Source link

Keep an eye on what we are doing
Be the first to get latest updates and exclusive content straight to your email inbox.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
Continue Reading

Trending