Connect with us

MARKETING

4 tips for navigating sensitive customer data

Published

on

4 tips for navigating sensitive customer data

Consumer data collection has exploded over the past decade. As users, we’ve grown too accustomed to sharing very personal data in this loosely regulated digital age through every topic searched, email sent and double-tap on a friend’s post. All these signals build a rich profile for targeting and personalization.

Data-driven marketing has had a transformational shift not only in how we engage with our customers but, even more importantly, in how we target new prospective customers. But for many, this new era of ultra-sophisticated audience-based targeting is begging more questions than the martech industry can answer. Most pointedly, is today’s reliance on data-driven targeting becoming a surveillance state? 

This recent backlash led to California’s Consumer Privacy Act (CCPA) which went into effect in 2018. More states have since followed, giving them more control over what personal data can be collected, brokered and used for marketing. 

Dig deeper: Why marketers should care about consumer privacy

Sensible vs. sensitive data targeting

As marketers, it’s more imperative than ever to respect a person’s privacy and still utilize all the available data responsibly to create personal ad experiences. With little overall regulation, all types of data are at our fingertips to build cross-channel campaigns that can feel tailor-made for the user. It’s a fine line, though, on which ads will be met with delight and which ads will feel intrusive and even offensive. 

As users of all this tech, we know all too well when marketers overstep. That line depends heavily on what’s being sold and how personal the marketer makes the ad experience. A gut check on your data strategies can quickly unveil how personal or behavioral data may inadvertently target a minority or potentially stigmatized group. 

Suffice it to say, if you’re selling pet food, you can likely create some hyper-targeted and personalized ads without tripping the sensitivity trigger. On the other hand, if you’re targeting people with ailments, new or prospective moms or even plus-sized clothing buyers, it’s critical to take a close look at:

  • What data is being used.
  • How those audiences are modeled.
  • How you’re differentiating your messaging to existing customers versus prospective buyers. 

Since it’s never a cut-and-dry answer, here are four suggestions for navigating sensitive data.

1. Steer clear of potentially stigmatizing data

Ad targeting prospective customers based on ailment data, LGBTQ+ or racial background can put us in an all too obvious danger zone. However, it’s just as crucial to be aware of targeting audiences that could be stigmatizing or just too personal. Some more obvious examples of these audiences could include religion, political affiliation, mental health, military status or even data that reveal personal or financial hardship. 

Martech platforms have removed the most sensitive audiences over the past few years. Yet, many ad targeting platforms still contain this data in less conspicuous derivations. For instance, you can no longer target by race in Meta’s properties but can still target BET Awards viewers. 

One way to avoid crossing the line from sensible to sensitive targeting is to review the audiences Meta has removed over the past few years and see if any of your data strategies could touch a sensitivity nerve for your customer or prospect.

2. Data usage for customer vs. prospect targeting

Collecting data on your customers open all sorts of innovative and clever insights that can be used for targeting. With that comes the responsibility to use personal data carefully when building audiences and personalized recommendations. 

They may be your customer, but be cognizant that some data-driven recommendations can be interpreted in a way that may make your customers uncomfortable or even find offensive. 

A big-box retailer learned this the hard way when they relied too heavily on programmatically generated ads and inadvertently served personalized ads for weight-loss products to plus-size apparel buyers. No surprise that the backlash was swift. Be aware of how you use data across the customer journey to avoid inadvertently putting consumers on the back foot.

For prospect targeting, it’s even more critical to be judicious about how personally identifiable data is used. A good rule is to stay close to demographic and publicly available audience data. 

As in life, it’s true in advertising that brands get one chance to make a good first impression. An overly personal ad with a new prospect can feel like a stranger asking or assuming more about the user than they are prepared to share.

Overstepping with new prospects will not only result in lower ad engagement but can quickly trigger a negative brand bias that will be a long road to winning that trust back.


Get MarTech! Daily. Free. In your inbox.


3. Be clear about why you’re collecting data

It’s always a good idea to be open with both your customers and prospects on:

  • What is the benefit to them of sharing their information with you.
  • How you plan to protect and use their data. 

Consumers are wise to data usage now. It’s crucial to let them know if the data will only be used for product recommendations or for tailored ads and/or personalization. Most importantly, if you utilize a retailer or data cooperative, let consumers know that portions of their data may be shared with other similar marketers for products and services they may be interested in. 

A critical piece of data collection is also giving your customers an easy way to opt out of having their data used for some or all of the marketing services.  

Dig deeper: Going beyond cookie consent: 3 strategies to achieve data compliance

4. Don’t forget traditional data gathering

With the deprecation of third-party cookies and ever-evolving restrictions on data sharing for iOS devices, it’s even more essential now to look to tried-and-true ways to capture user data. 

Whether it be collecting email addresses at checkout or developing a rich content strategy for your brand that incentivizes your customers or prospective customers to subscribe to ‘member only’ content or newsletters. 

Another way to gather new data is to work with other brands that have a high customer affinity for your brand and build second-party data assets to send direct mail or target across display or social media where the likelihood of them engaging with your brand and ideally purchasing is higher than off the shelf audience selections. 

A great example of this is seeing premium fitness brands including Lulu Lemon, and even boutique brands like Vuori, partner with Equinox to merchandise and market their products with luxury-minded fitness consumers.  

Maximize your ad targeting strategy without overstepping

Audience-driven targeting is ever-evolving. The data scientist that gave us the early tools to do data-driven targeting relied on complex programmatic data modeling with the promise to reach people with the right product, at the right time with the right message. 

What we’ve learned since is that while this promise may finally be possible, it’s up to us to decide which of those levers to pull and which ones to push back so we don’t overstep and always keep our marketing and messaging securely in the comfort zone of our customers.  


Opinions expressed in this article are those of the guest author and not necessarily MarTech. Staff authors are listed here.


About The Author

A leader in the data-driven AdTech space that spans 20 years across both the US and the EU. Ken Zachmann’s worked on the ground floor of a data start-up that yielded an eight-figure exit and served as VP and SVP for two leading digital data firms and saw them through to acquisition in 2017.
In 2018 Ken launched his first consulting firm focused on identity-based solutions and helping companies navigate a cookie-less future. Ken’s background in data and identity resolution, paired with his experience of living and working in both the US and Germany, has afforded him a unique understanding of the complexities of sourcing and building data, identity and measurement solutions.

Source link

Keep an eye on what we are doing
Be the first to get latest updates and exclusive content straight to your email inbox.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address

MARKETING

YouTube Ad Specs, Sizes, and Examples [2024 Update]

Published

on

YouTube Ad Specs, Sizes, and Examples

Introduction

With billions of users each month, YouTube is the world’s second largest search engine and top website for video content. This makes it a great place for advertising. To succeed, advertisers need to follow the correct YouTube ad specifications. These rules help your ad reach more viewers, increasing the chance of gaining new customers and boosting brand awareness.

Types of YouTube Ads

Video Ads

  • Description: These play before, during, or after a YouTube video on computers or mobile devices.
  • Types:
    • In-stream ads: Can be skippable or non-skippable.
    • Bumper ads: Non-skippable, short ads that play before, during, or after a video.

Display Ads

  • Description: These appear in different spots on YouTube and usually use text or static images.
  • Note: YouTube does not support display image ads directly on its app, but these can be targeted to YouTube.com through Google Display Network (GDN).

Companion Banners

  • Description: Appears to the right of the YouTube player on desktop.
  • Requirement: Must be purchased alongside In-stream ads, Bumper ads, or In-feed ads.

In-feed Ads

  • Description: Resemble videos with images, headlines, and text. They link to a public or unlisted YouTube video.

Outstream Ads

  • Description: Mobile-only video ads that play outside of YouTube, on websites and apps within the Google video partner network.

Masthead Ads

  • Description: Premium, high-visibility banner ads displayed at the top of the YouTube homepage for both desktop and mobile users.

YouTube Ad Specs by Type

Skippable In-stream Video Ads

  • Placement: Before, during, or after a YouTube video.
  • Resolution:
    • Horizontal: 1920 x 1080px
    • Vertical: 1080 x 1920px
    • Square: 1080 x 1080px
  • Aspect Ratio:
    • Horizontal: 16:9
    • Vertical: 9:16
    • Square: 1:1
  • Length:
    • Awareness: 15-20 seconds
    • Consideration: 2-3 minutes
    • Action: 15-20 seconds

Non-skippable In-stream Video Ads

  • Description: Must be watched completely before the main video.
  • Length: 15 seconds (or 20 seconds in certain markets).
  • Resolution:
    • Horizontal: 1920 x 1080px
    • Vertical: 1080 x 1920px
    • Square: 1080 x 1080px
  • Aspect Ratio:
    • Horizontal: 16:9
    • Vertical: 9:16
    • Square: 1:1

Bumper Ads

  • Length: Maximum 6 seconds.
  • File Format: MP4, Quicktime, AVI, ASF, Windows Media, or MPEG.
  • Resolution:
    • Horizontal: 640 x 360px
    • Vertical: 480 x 360px

In-feed Ads

  • Description: Show alongside YouTube content, like search results or the Home feed.
  • Resolution:
    • Horizontal: 1920 x 1080px
    • Vertical: 1080 x 1920px
    • Square: 1080 x 1080px
  • Aspect Ratio:
    • Horizontal: 16:9
    • Square: 1:1
  • Length:
    • Awareness: 15-20 seconds
    • Consideration: 2-3 minutes
  • Headline/Description:
    • Headline: Up to 2 lines, 40 characters per line
    • Description: Up to 2 lines, 35 characters per line

Display Ads

  • Description: Static images or animated media that appear on YouTube next to video suggestions, in search results, or on the homepage.
  • Image Size: 300×60 pixels.
  • File Type: GIF, JPG, PNG.
  • File Size: Max 150KB.
  • Max Animation Length: 30 seconds.

Outstream Ads

  • Description: Mobile-only video ads that appear on websites and apps within the Google video partner network, not on YouTube itself.
  • Logo Specs:
    • Square: 1:1 (200 x 200px).
    • File Type: JPG, GIF, PNG.
    • Max Size: 200KB.

Masthead Ads

  • Description: High-visibility ads at the top of the YouTube homepage.
  • Resolution: 1920 x 1080 or higher.
  • File Type: JPG or PNG (without transparency).

Conclusion

YouTube offers a variety of ad formats to reach audiences effectively in 2024. Whether you want to build brand awareness, drive conversions, or target specific demographics, YouTube provides a dynamic platform for your advertising needs. Always follow Google’s advertising policies and the technical ad specs to ensure your ads perform their best. Ready to start using YouTube ads? Contact us today to get started!

Keep an eye on what we are doing
Be the first to get latest updates and exclusive content straight to your email inbox.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
Continue Reading

MARKETING

Why We Are Always ‘Clicking to Buy’, According to Psychologists

Published

on

Why We Are Always 'Clicking to Buy', According to Psychologists

Amazon pillows.

(more…)

Keep an eye on what we are doing
Be the first to get latest updates and exclusive content straight to your email inbox.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
Continue Reading

MARKETING

A deeper dive into data, personalization and Copilots

Published

on

A deeper dive into data, personalization and Copilots

Salesforce launched a collection of new, generative AI-related products at Connections in Chicago this week. They included new Einstein Copilots for marketers and merchants and Einstein Personalization.

To better understand, not only the potential impact of the new products, but the evolving Salesforce architecture, we sat down with Bobby Jania, CMO, Marketing Cloud.

Dig deeper: Salesforce piles on the Einstein Copilots

Salesforce’s evolving architecture

It’s hard to deny that Salesforce likes coming up with new names for platforms and products (what happened to Customer 360?) and this can sometimes make the observer wonder if something is brand new, or old but with a brand new name. In particular, what exactly is Einstein 1 and how is it related to Salesforce Data Cloud?

“Data Cloud is built on the Einstein 1 platform,” Jania explained. “The Einstein 1 platform is our entire Salesforce platform and that includes products like Sales Cloud, Service Cloud — that it includes the original idea of Salesforce not just being in the cloud, but being multi-tenancy.”

Data Cloud — not an acquisition, of course — was built natively on that platform. It was the first product built on Hyperforce, Salesforce’s new cloud infrastructure architecture. “Since Data Cloud was on what we now call the Einstein 1 platform from Day One, it has always natively connected to, and been able to read anything in Sales Cloud, Service Cloud [and so on]. On top of that, we can now bring in, not only structured but unstructured data.”

That’s a significant progression from the position, several years ago, when Salesforce had stitched together a platform around various acquisitions (ExactTarget, for example) that didn’t necessarily talk to each other.

“At times, what we would do is have a kind of behind-the-scenes flow where data from one product could be moved into another product,” said Jania, “but in many of those cases the data would then be in both, whereas now the data is in Data Cloud. Tableau will run natively off Data Cloud; Commerce Cloud, Service Cloud, Marketing Cloud — they’re all going to the same operational customer profile.” They’re not copying the data from Data Cloud, Jania confirmed.

Another thing to know is tit’s possible for Salesforce customers to import their own datasets into Data Cloud. “We wanted to create a federated data model,” said Jania. “If you’re using Snowflake, for example, we more or less virtually sit on your data lake. The value we add is that we will look at all your data and help you form these operational customer profiles.”

Let’s learn more about Einstein Copilot

“Copilot means that I have an assistant with me in the tool where I need to be working that contextually knows what I am trying to do and helps me at every step of the process,” Jania said.

For marketers, this might begin with a campaign brief developed with Copilot’s assistance, the identification of an audience based on the brief, and then the development of email or other content. “What’s really cool is the idea of Einstein Studio where our customers will create actions [for Copilot] that we hadn’t even thought about.”

Here’s a key insight (back to nomenclature). We reported on Copilot for markets, Copilot for merchants, Copilot for shoppers. It turns out, however, that there is just one Copilot, Einstein Copilot, and these are use cases. “There’s just one Copilot, we just add these for a little clarity; we’re going to talk about marketing use cases, about shoppers’ use cases. These are actions for the marketing use cases we built out of the box; you can build your own.”

It’s surely going to take a little time for marketers to learn to work easily with Copilot. “There’s always time for adoption,” Jania agreed. “What is directly connected with this is, this is my ninth Connections and this one has the most hands-on training that I’ve seen since 2014 — and a lot of that is getting people using Data Cloud, using these tools rather than just being given a demo.”

What’s new about Einstein Personalization

Salesforce Einstein has been around since 2016 and many of the use cases seem to have involved personalization in various forms. What’s new?

“Einstein Personalization is a real-time decision engine and it’s going to choose next-best-action, next-best-offer. What is new is that it’s a service now that runs natively on top of Data Cloud.” A lot of real-time decision engines need their own set of data that might actually be a subset of data. “Einstein Personalization is going to look holistically at a customer and recommend a next-best-action that could be natively surfaced in Service Cloud, Sales Cloud or Marketing Cloud.”

Finally, trust

One feature of the presentations at Connections was the reassurance that, although public LLMs like ChatGPT could be selected for application to customer data, none of that data would be retained by the LLMs. Is this just a matter of written agreements? No, not just that, said Jania.

“In the Einstein Trust Layer, all of the data, when it connects to an LLM, runs through our gateway. If there was a prompt that had personally identifiable information — a credit card number, an email address — at a mimum, all that is stripped out. The LLMs do not store the output; we store the output for auditing back in Salesforce. Any output that comes back through our gateway is logged in our system; it runs through a toxicity model; and only at the end do we put PII data back into the answer. There are real pieces beyond a handshake that this data is safe.”

Source link

Keep an eye on what we are doing
Be the first to get latest updates and exclusive content straight to your email inbox.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
Continue Reading

Trending