Connect with us

MARKETING

Getting started with the Agile Marketing Navigator

Published

on

Getting Started with the Agile Marketing Navigator: Team Showcase


We recently introduced you to the Agile Marketing Navigator, a flexible framework for navigating agile marketing for marketers, by marketers in the article A new way to navigate agile marketing. The navigator has four major components: Collaborative Planning Workshop, Launch Cycle, Key Practices and Roles. Within these categories, there are several sub-pieces for implementation.

In recent articles we covered the Collaborative Planning Workshop and the Launch Cycle. Now we’re going to dive into the third of our 6 Key Practices: Work in Progress.

Marketers are overloaded

Let’s face it, marketers have a big problem — they’re overloaded with too much work. A big consequence of too much work happening at once is getting a lot of work started, but nothing really finished. 

In agile marketing, a primary goal is to deliver work rapidly so we can get feedback to inform future work. However, when marketers are spinning in a sea of content creation soup or email overload, work is often getting caught up somewhere in the internal workflow and not getting delivered as quickly as it should.


Get MarTech! Daily. Free. In your inbox.


Understand the team’s current work in progress

Work in Progress (WIP) limits derive from the popular workflow framework Kanban and it’s a practice that helps teams understand optimal workflow. 

Let’s say that you’re a content marketing team and you’re visualizing your work in an agile tool such as Workfront or JIRA. The team notices that they could be more efficient at getting work from “in progress” to “done” and that limiting how much work is in progress at any given time may help them be a better-performing team.

To get started, the team should take a few weeks to track how much work they currently have in practice each day, coming up with an average. Here’s a simple way to calculate the team’s current WIP by jotting down what’s on the team’s board:

Day Number of work items in Progress
1 8
2 10
3 7
4 9
5 12
6 9
7 13
8 12
9 10
10 11
11 12
12 13
13 8
14 9
Average WIP 10

To calculate the team’s current work in progress, add up the total in column 2 and divide by 14, which gives an average of 10. This means that the team averages 10 items in progress at any one time.

Experiment with WIP Limits

Now that the team understands their starting place, they can experiment by setting different WIP limits. Since they know that with 10 work items in progress at any given time they are not at optimal efficiency, they should agree to set a lower limit, such as eight, and experiment over the next few weeks by not allowing more than eight pieces of content to be in progress at once.

After that two-week period, the team should discuss how it went. Did they see any improvements in how much work got done? If yes, they may have found an optimal number. If they believe it is still too high, they can try another cycle with a lower number.

It may take several experiments to understand the team’s WIP limit, and that number may change over time. The main point is that the team is empowered to set this themselves and to work together to improve their efficiency.

This isn’t a beginner’s practice, so I recommend only trying this with teams that have been working in agile marketing together for six months or longer and have mastered the basics. This practice is more about refining and optimizing a relatively experienced agile marketing team to improve efficiency.


Catch up on the Agile Marketing Navigator series!



Opinions expressed in this article are those of the guest author and not necessarily MarTech. Staff authors are listed here.


About The Author

Why leading an agile marketing organization requires a vision for

Stacey knows what it’s like to be a marketer, after all, she’s one of the few agile coaches and trainers that got her start there. After graduating from journalism school, she worked as a content writer, strategist, director and adjunct marketing professor. She became passionate about agile as a better way to work in 2012 when she experimented with it for an ad agency client. Since then she has been a scrum master, agile coach and has helped with numerous agile transformations with teams across the globe. Stacey speaks at several agile conferences, has more certs to her name than she can remember and loves to practice agile at home with her family. As a lifelong Minnesotan, she recently relocated to North Carolina where she’s busy learning how to cook grits and say “y’all.”

Source link

Keep an eye on what we are doing
Be the first to get latest updates and exclusive content straight to your email inbox.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address

MARKETING

YouTube Ad Specs, Sizes, and Examples [2024 Update]

Published

on

YouTube Ad Specs, Sizes, and Examples

Introduction

With billions of users each month, YouTube is the world’s second largest search engine and top website for video content. This makes it a great place for advertising. To succeed, advertisers need to follow the correct YouTube ad specifications. These rules help your ad reach more viewers, increasing the chance of gaining new customers and boosting brand awareness.

Types of YouTube Ads

Video Ads

  • Description: These play before, during, or after a YouTube video on computers or mobile devices.
  • Types:
    • In-stream ads: Can be skippable or non-skippable.
    • Bumper ads: Non-skippable, short ads that play before, during, or after a video.

Display Ads

  • Description: These appear in different spots on YouTube and usually use text or static images.
  • Note: YouTube does not support display image ads directly on its app, but these can be targeted to YouTube.com through Google Display Network (GDN).

Companion Banners

  • Description: Appears to the right of the YouTube player on desktop.
  • Requirement: Must be purchased alongside In-stream ads, Bumper ads, or In-feed ads.

In-feed Ads

  • Description: Resemble videos with images, headlines, and text. They link to a public or unlisted YouTube video.

Outstream Ads

  • Description: Mobile-only video ads that play outside of YouTube, on websites and apps within the Google video partner network.

Masthead Ads

  • Description: Premium, high-visibility banner ads displayed at the top of the YouTube homepage for both desktop and mobile users.

YouTube Ad Specs by Type

Skippable In-stream Video Ads

  • Placement: Before, during, or after a YouTube video.
  • Resolution:
    • Horizontal: 1920 x 1080px
    • Vertical: 1080 x 1920px
    • Square: 1080 x 1080px
  • Aspect Ratio:
    • Horizontal: 16:9
    • Vertical: 9:16
    • Square: 1:1
  • Length:
    • Awareness: 15-20 seconds
    • Consideration: 2-3 minutes
    • Action: 15-20 seconds

Non-skippable In-stream Video Ads

  • Description: Must be watched completely before the main video.
  • Length: 15 seconds (or 20 seconds in certain markets).
  • Resolution:
    • Horizontal: 1920 x 1080px
    • Vertical: 1080 x 1920px
    • Square: 1080 x 1080px
  • Aspect Ratio:
    • Horizontal: 16:9
    • Vertical: 9:16
    • Square: 1:1

Bumper Ads

  • Length: Maximum 6 seconds.
  • File Format: MP4, Quicktime, AVI, ASF, Windows Media, or MPEG.
  • Resolution:
    • Horizontal: 640 x 360px
    • Vertical: 480 x 360px

In-feed Ads

  • Description: Show alongside YouTube content, like search results or the Home feed.
  • Resolution:
    • Horizontal: 1920 x 1080px
    • Vertical: 1080 x 1920px
    • Square: 1080 x 1080px
  • Aspect Ratio:
    • Horizontal: 16:9
    • Square: 1:1
  • Length:
    • Awareness: 15-20 seconds
    • Consideration: 2-3 minutes
  • Headline/Description:
    • Headline: Up to 2 lines, 40 characters per line
    • Description: Up to 2 lines, 35 characters per line

Display Ads

  • Description: Static images or animated media that appear on YouTube next to video suggestions, in search results, or on the homepage.
  • Image Size: 300×60 pixels.
  • File Type: GIF, JPG, PNG.
  • File Size: Max 150KB.
  • Max Animation Length: 30 seconds.

Outstream Ads

  • Description: Mobile-only video ads that appear on websites and apps within the Google video partner network, not on YouTube itself.
  • Logo Specs:
    • Square: 1:1 (200 x 200px).
    • File Type: JPG, GIF, PNG.
    • Max Size: 200KB.

Masthead Ads

  • Description: High-visibility ads at the top of the YouTube homepage.
  • Resolution: 1920 x 1080 or higher.
  • File Type: JPG or PNG (without transparency).

Conclusion

YouTube offers a variety of ad formats to reach audiences effectively in 2024. Whether you want to build brand awareness, drive conversions, or target specific demographics, YouTube provides a dynamic platform for your advertising needs. Always follow Google’s advertising policies and the technical ad specs to ensure your ads perform their best. Ready to start using YouTube ads? Contact us today to get started!

Keep an eye on what we are doing
Be the first to get latest updates and exclusive content straight to your email inbox.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
Continue Reading

MARKETING

Why We Are Always ‘Clicking to Buy’, According to Psychologists

Published

on

Why We Are Always 'Clicking to Buy', According to Psychologists

Amazon pillows.

(more…)

Keep an eye on what we are doing
Be the first to get latest updates and exclusive content straight to your email inbox.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
Continue Reading

MARKETING

A deeper dive into data, personalization and Copilots

Published

on

A deeper dive into data, personalization and Copilots

Salesforce launched a collection of new, generative AI-related products at Connections in Chicago this week. They included new Einstein Copilots for marketers and merchants and Einstein Personalization.

To better understand, not only the potential impact of the new products, but the evolving Salesforce architecture, we sat down with Bobby Jania, CMO, Marketing Cloud.

Dig deeper: Salesforce piles on the Einstein Copilots

Salesforce’s evolving architecture

It’s hard to deny that Salesforce likes coming up with new names for platforms and products (what happened to Customer 360?) and this can sometimes make the observer wonder if something is brand new, or old but with a brand new name. In particular, what exactly is Einstein 1 and how is it related to Salesforce Data Cloud?

“Data Cloud is built on the Einstein 1 platform,” Jania explained. “The Einstein 1 platform is our entire Salesforce platform and that includes products like Sales Cloud, Service Cloud — that it includes the original idea of Salesforce not just being in the cloud, but being multi-tenancy.”

Data Cloud — not an acquisition, of course — was built natively on that platform. It was the first product built on Hyperforce, Salesforce’s new cloud infrastructure architecture. “Since Data Cloud was on what we now call the Einstein 1 platform from Day One, it has always natively connected to, and been able to read anything in Sales Cloud, Service Cloud [and so on]. On top of that, we can now bring in, not only structured but unstructured data.”

That’s a significant progression from the position, several years ago, when Salesforce had stitched together a platform around various acquisitions (ExactTarget, for example) that didn’t necessarily talk to each other.

“At times, what we would do is have a kind of behind-the-scenes flow where data from one product could be moved into another product,” said Jania, “but in many of those cases the data would then be in both, whereas now the data is in Data Cloud. Tableau will run natively off Data Cloud; Commerce Cloud, Service Cloud, Marketing Cloud — they’re all going to the same operational customer profile.” They’re not copying the data from Data Cloud, Jania confirmed.

Another thing to know is tit’s possible for Salesforce customers to import their own datasets into Data Cloud. “We wanted to create a federated data model,” said Jania. “If you’re using Snowflake, for example, we more or less virtually sit on your data lake. The value we add is that we will look at all your data and help you form these operational customer profiles.”

Let’s learn more about Einstein Copilot

“Copilot means that I have an assistant with me in the tool where I need to be working that contextually knows what I am trying to do and helps me at every step of the process,” Jania said.

For marketers, this might begin with a campaign brief developed with Copilot’s assistance, the identification of an audience based on the brief, and then the development of email or other content. “What’s really cool is the idea of Einstein Studio where our customers will create actions [for Copilot] that we hadn’t even thought about.”

Here’s a key insight (back to nomenclature). We reported on Copilot for markets, Copilot for merchants, Copilot for shoppers. It turns out, however, that there is just one Copilot, Einstein Copilot, and these are use cases. “There’s just one Copilot, we just add these for a little clarity; we’re going to talk about marketing use cases, about shoppers’ use cases. These are actions for the marketing use cases we built out of the box; you can build your own.”

It’s surely going to take a little time for marketers to learn to work easily with Copilot. “There’s always time for adoption,” Jania agreed. “What is directly connected with this is, this is my ninth Connections and this one has the most hands-on training that I’ve seen since 2014 — and a lot of that is getting people using Data Cloud, using these tools rather than just being given a demo.”

What’s new about Einstein Personalization

Salesforce Einstein has been around since 2016 and many of the use cases seem to have involved personalization in various forms. What’s new?

“Einstein Personalization is a real-time decision engine and it’s going to choose next-best-action, next-best-offer. What is new is that it’s a service now that runs natively on top of Data Cloud.” A lot of real-time decision engines need their own set of data that might actually be a subset of data. “Einstein Personalization is going to look holistically at a customer and recommend a next-best-action that could be natively surfaced in Service Cloud, Sales Cloud or Marketing Cloud.”

Finally, trust

One feature of the presentations at Connections was the reassurance that, although public LLMs like ChatGPT could be selected for application to customer data, none of that data would be retained by the LLMs. Is this just a matter of written agreements? No, not just that, said Jania.

“In the Einstein Trust Layer, all of the data, when it connects to an LLM, runs through our gateway. If there was a prompt that had personally identifiable information — a credit card number, an email address — at a mimum, all that is stripped out. The LLMs do not store the output; we store the output for auditing back in Salesforce. Any output that comes back through our gateway is logged in our system; it runs through a toxicity model; and only at the end do we put PII data back into the answer. There are real pieces beyond a handshake that this data is safe.”

Source link

Keep an eye on what we are doing
Be the first to get latest updates and exclusive content straight to your email inbox.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
Continue Reading

Trending