MARKETING
How to make the most of cohort analysis
No cookies for you.
With third-party data going the way of the dodo bird, digital marketers are looking for ways to do without cookies. Call it “data dieting.” But something must replace those bits and bytes of third-party sweetness. If you can’t drop a cookie, track a cohort.
Any group of customers engaging your web site can be counted as a cohort, provided you are tracking what they do. Are they just going as far as the landing page? Are they filling the cart, but not checking out? Did they buy something before, but haven’t shopped lately?
Churn, drop-off, customer lifetime value — all can be tracked as cohorts. But the online vendor must know what measures are most relevant to their business to make the most of cohort analysis.
(Segment [cohort]): Get it?
“Segments” and “cohorts” are terms sometimes used interchangeably, but that would be incorrect.
Google defined cohort this way: A cohort is a group of users who share a common characteristic. “For example, all users with the same Acquisition Date belong to the same cohort. The Cohort Analysis report lets you isolate and analyze cohort behavior.”
In contrast, segmentation means organizing groups of users around common characteristics, like demographics, geography, personality, or value. It can also group customers using more than one characteristic.
“A cohort is a form of a segment. All cohorts are segments, but not all segments are cohorts,” said Eric Sloan, director of strategy at performance marketing agency Thrive Digital. Cohorts can be understood as “time-based segments”, for example, a set of users signing on at a web site at a particular time.
Sometimes the two terms get mixed up because of the analytical tool being used by the vendor or analyst, noted Adam Greco, product evangelist for digital optimization platform Amplitude. A cohort is “a group of like users based on interest,” he said. Segmentation “is like a filter,” Greco continued. A segment is an activity. Cohorts are people. And a “cohort depends on identity resolution”, he said.
Simply identifying a cohort is not enough. The analyst will have to drill down further to identify cause-and-effect. “It’s the only way to make cohort analysis meaningful,” Sloan said. The biggest pitfall is just assuming “the time-based cohort caused what you are looking at,” he said.
Asking the right questions
Which leads to the data. There is an answer in there somewhere, provided you ask the right question to get it.
“We spend time using data to figure out the cohort that is meaningful for the business,” Greco said. Take the example of a cohort defined by behavior — customers going through a multi-step process to complete a transaction.
“You need the right data to build the right cohort,” Greco said. You don’t need to worry about tracking people who add items to the cart. “Just because you can track something does not mean you should.” He added. “Too few companies start with the end in mind.” If you start by listing the relevant cohorts you want to track, and work backwards, then you are more likely to be successful, he pointed out.
For Sloan, the cohort is part and parcel of root-cause analysis. “[When] you see KPIs change, you look at all the different factors that caused the change.” Again, correlation is not causation, he stressed, but you keep drilling down through the cycles and ask intuitive or logical questions, finding the data that answers the question.
“Start with a cohort. See if it is time-based.” Sloan said. Spot the drop-off from period to period. Include new visitors as older ones drop off. Look at the face value of all behaviors and events, going through the initial period, then to 30, 60 and 90-day increments. “A cohort is the first step in eliminating some of the noise,” he said, as the analyst tries to measure the customer experience with the web site.
Greco offered other paths. One approach uses the data to isolate groups of identified users so that groups can be compared. He called this a “persistent cohort.” For example, tracking the number of online shoppers for a seven-day period. New users will naturally enter this cohort while others exit it after the time set. Those who purchase are counted while those who don’t buy are tallied as drop-offs.
Then Greco outlined the “predictive cohort”. One example is looking at the number of shoppers who visit the web site to make another purchase. There may be a group that is 90% likely to buy something next week; another that is 80-90% likely to make a purchase, yet another group that is 70-80% as likely to acquire an item. The marketer can use that data to offer discounts to each cohort, only increasing the discount to entice shoppers in the next group less likely to buy something. “You use the cohort in combination with marketing and promotion to get people to convert,” he explained.
Making the most of data
Cohort analysis is an approach that requires marketers to change their thinking to make the most of their data. Our experts have the same starting point, but pursue their goals along different lines.
To use cohort analysis, “start with the question.” Sloan said. “Tie back to business results that are possible to answer…Understand where and how to drill down…Make sure the KPIs are meaningful.” Make sure the data you are analyzing reflects reality, he added. Data can skew if the same online shopper is accessing the same web site using different devices at different times, he cautioned.
Greco framed cohort analysis as a competitive necessity. In the e-commerce realm, every online shopper is just a “click or a swipe away”, he noted. The burden is on the marketer “to figure out how they are losing people and bring them back.” The faster problems are solved and fixed, the more likely an online web site will be successful.
MARKETING
YouTube Ad Specs, Sizes, and Examples [2024 Update]
Introduction
With billions of users each month, YouTube is the world’s second largest search engine and top website for video content. This makes it a great place for advertising. To succeed, advertisers need to follow the correct YouTube ad specifications. These rules help your ad reach more viewers, increasing the chance of gaining new customers and boosting brand awareness.
Types of YouTube Ads
Video Ads
- Description: These play before, during, or after a YouTube video on computers or mobile devices.
- Types:
- In-stream ads: Can be skippable or non-skippable.
- Bumper ads: Non-skippable, short ads that play before, during, or after a video.
Display Ads
- Description: These appear in different spots on YouTube and usually use text or static images.
- Note: YouTube does not support display image ads directly on its app, but these can be targeted to YouTube.com through Google Display Network (GDN).
Companion Banners
- Description: Appears to the right of the YouTube player on desktop.
- Requirement: Must be purchased alongside In-stream ads, Bumper ads, or In-feed ads.
In-feed Ads
- Description: Resemble videos with images, headlines, and text. They link to a public or unlisted YouTube video.
Outstream Ads
- Description: Mobile-only video ads that play outside of YouTube, on websites and apps within the Google video partner network.
Masthead Ads
- Description: Premium, high-visibility banner ads displayed at the top of the YouTube homepage for both desktop and mobile users.
YouTube Ad Specs by Type
Skippable In-stream Video Ads
- Placement: Before, during, or after a YouTube video.
- Resolution:
- Horizontal: 1920 x 1080px
- Vertical: 1080 x 1920px
- Square: 1080 x 1080px
- Aspect Ratio:
- Horizontal: 16:9
- Vertical: 9:16
- Square: 1:1
- Length:
- Awareness: 15-20 seconds
- Consideration: 2-3 minutes
- Action: 15-20 seconds
Non-skippable In-stream Video Ads
- Description: Must be watched completely before the main video.
- Length: 15 seconds (or 20 seconds in certain markets).
- Resolution:
- Horizontal: 1920 x 1080px
- Vertical: 1080 x 1920px
- Square: 1080 x 1080px
- Aspect Ratio:
- Horizontal: 16:9
- Vertical: 9:16
- Square: 1:1
Bumper Ads
- Length: Maximum 6 seconds.
- File Format: MP4, Quicktime, AVI, ASF, Windows Media, or MPEG.
- Resolution:
- Horizontal: 640 x 360px
- Vertical: 480 x 360px
In-feed Ads
- Description: Show alongside YouTube content, like search results or the Home feed.
- Resolution:
- Horizontal: 1920 x 1080px
- Vertical: 1080 x 1920px
- Square: 1080 x 1080px
- Aspect Ratio:
- Horizontal: 16:9
- Square: 1:1
- Length:
- Awareness: 15-20 seconds
- Consideration: 2-3 minutes
- Headline/Description:
- Headline: Up to 2 lines, 40 characters per line
- Description: Up to 2 lines, 35 characters per line
Display Ads
- Description: Static images or animated media that appear on YouTube next to video suggestions, in search results, or on the homepage.
- Image Size: 300×60 pixels.
- File Type: GIF, JPG, PNG.
- File Size: Max 150KB.
- Max Animation Length: 30 seconds.
Outstream Ads
- Description: Mobile-only video ads that appear on websites and apps within the Google video partner network, not on YouTube itself.
- Logo Specs:
- Square: 1:1 (200 x 200px).
- File Type: JPG, GIF, PNG.
- Max Size: 200KB.
Masthead Ads
- Description: High-visibility ads at the top of the YouTube homepage.
- Resolution: 1920 x 1080 or higher.
- File Type: JPG or PNG (without transparency).
Conclusion
YouTube offers a variety of ad formats to reach audiences effectively in 2024. Whether you want to build brand awareness, drive conversions, or target specific demographics, YouTube provides a dynamic platform for your advertising needs. Always follow Google’s advertising policies and the technical ad specs to ensure your ads perform their best. Ready to start using YouTube ads? Contact us today to get started!
MARKETING
Why We Are Always ‘Clicking to Buy’, According to Psychologists
Amazon pillows.
MARKETING
A deeper dive into data, personalization and Copilots
Salesforce launched a collection of new, generative AI-related products at Connections in Chicago this week. They included new Einstein Copilots for marketers and merchants and Einstein Personalization.
To better understand, not only the potential impact of the new products, but the evolving Salesforce architecture, we sat down with Bobby Jania, CMO, Marketing Cloud.
Dig deeper: Salesforce piles on the Einstein Copilots
Salesforce’s evolving architecture
It’s hard to deny that Salesforce likes coming up with new names for platforms and products (what happened to Customer 360?) and this can sometimes make the observer wonder if something is brand new, or old but with a brand new name. In particular, what exactly is Einstein 1 and how is it related to Salesforce Data Cloud?
“Data Cloud is built on the Einstein 1 platform,” Jania explained. “The Einstein 1 platform is our entire Salesforce platform and that includes products like Sales Cloud, Service Cloud — that it includes the original idea of Salesforce not just being in the cloud, but being multi-tenancy.”
Data Cloud — not an acquisition, of course — was built natively on that platform. It was the first product built on Hyperforce, Salesforce’s new cloud infrastructure architecture. “Since Data Cloud was on what we now call the Einstein 1 platform from Day One, it has always natively connected to, and been able to read anything in Sales Cloud, Service Cloud [and so on]. On top of that, we can now bring in, not only structured but unstructured data.”
That’s a significant progression from the position, several years ago, when Salesforce had stitched together a platform around various acquisitions (ExactTarget, for example) that didn’t necessarily talk to each other.
“At times, what we would do is have a kind of behind-the-scenes flow where data from one product could be moved into another product,” said Jania, “but in many of those cases the data would then be in both, whereas now the data is in Data Cloud. Tableau will run natively off Data Cloud; Commerce Cloud, Service Cloud, Marketing Cloud — they’re all going to the same operational customer profile.” They’re not copying the data from Data Cloud, Jania confirmed.
Another thing to know is tit’s possible for Salesforce customers to import their own datasets into Data Cloud. “We wanted to create a federated data model,” said Jania. “If you’re using Snowflake, for example, we more or less virtually sit on your data lake. The value we add is that we will look at all your data and help you form these operational customer profiles.”
Let’s learn more about Einstein Copilot
“Copilot means that I have an assistant with me in the tool where I need to be working that contextually knows what I am trying to do and helps me at every step of the process,” Jania said.
For marketers, this might begin with a campaign brief developed with Copilot’s assistance, the identification of an audience based on the brief, and then the development of email or other content. “What’s really cool is the idea of Einstein Studio where our customers will create actions [for Copilot] that we hadn’t even thought about.”
Here’s a key insight (back to nomenclature). We reported on Copilot for markets, Copilot for merchants, Copilot for shoppers. It turns out, however, that there is just one Copilot, Einstein Copilot, and these are use cases. “There’s just one Copilot, we just add these for a little clarity; we’re going to talk about marketing use cases, about shoppers’ use cases. These are actions for the marketing use cases we built out of the box; you can build your own.”
It’s surely going to take a little time for marketers to learn to work easily with Copilot. “There’s always time for adoption,” Jania agreed. “What is directly connected with this is, this is my ninth Connections and this one has the most hands-on training that I’ve seen since 2014 — and a lot of that is getting people using Data Cloud, using these tools rather than just being given a demo.”
What’s new about Einstein Personalization
Salesforce Einstein has been around since 2016 and many of the use cases seem to have involved personalization in various forms. What’s new?
“Einstein Personalization is a real-time decision engine and it’s going to choose next-best-action, next-best-offer. What is new is that it’s a service now that runs natively on top of Data Cloud.” A lot of real-time decision engines need their own set of data that might actually be a subset of data. “Einstein Personalization is going to look holistically at a customer and recommend a next-best-action that could be natively surfaced in Service Cloud, Sales Cloud or Marketing Cloud.”
Finally, trust
One feature of the presentations at Connections was the reassurance that, although public LLMs like ChatGPT could be selected for application to customer data, none of that data would be retained by the LLMs. Is this just a matter of written agreements? No, not just that, said Jania.
“In the Einstein Trust Layer, all of the data, when it connects to an LLM, runs through our gateway. If there was a prompt that had personally identifiable information — a credit card number, an email address — at a mimum, all that is stripped out. The LLMs do not store the output; we store the output for auditing back in Salesforce. Any output that comes back through our gateway is logged in our system; it runs through a toxicity model; and only at the end do we put PII data back into the answer. There are real pieces beyond a handshake that this data is safe.”
-
SEARCHENGINES6 days ago
Google August Core Update Done, Google Interview, Google Ads & Merchant Center News & The YouTube Algorithm SEO
-
SEO7 days ago
Plot Up To Five Metrics At Once
-
SEO6 days ago
Google’s Guidance About The Recent Ranking Update
-
SEARCHENGINES5 days ago
Google Search Volatility Still Heated After August Core Update Rollout
-
AFFILIATE MARKETING7 days ago
Best US Cities to Start a Business, Entrepreneurship: Report
-
SEARCHENGINES4 days ago
Daily Search Forum Recap: September 9, 2024
-
SEO5 days ago
Mediavine Bans Publisher For Overuse Of AI-Generated Content
-
AFFILIATE MARKETING6 days ago
Invest in Yourself with a Lifetime of StackSkills Courses for $29.97
You must be logged in to post a comment Login