Connect with us

MARKETING

Attention Metrics Hot for 2024

Published

on

A woman looking at data represents how important attention metrics will be in marketing in 2024.

New year, new format: CMI’s weekly news series has evolved into What’s New – a hot take on a current marketing topic.

Every week, CMI chief strategy advisor Robert Rose will explain a hot topic or pattern – including why you should care about it. More than headlines of the week, Robert’s analysis will expand to cover emerging trends before they make marketing news, new looks at tried-and-possibly-no-longer-true standards, and almost forgotten tactics poised to reenter the mix.

And that’s where the series debut kicks off. As the song lyric from All That Jazz goes: “Everything old is new again.”

Twenty-five years ago — before you could measure clicks, acquisition, downloads, and engagement — marketers bought ads to capture people’s attention.

In 2024, Robert says, B2B marketers will return to attention metrics. Watch and listen to what he has to say, or read on for the highlights:

Challenging old and newer impact metrics

In the old days, marketers placed ads in magazines or on television, letting them run for a defined period. Then, they’d ask consumers, “Hey, do you remember seeing this ad?” The responses would turn into a metric — ad recall.

During that era, some consumers developed a set of liked and disliked commercials. I know I did. I still run into old TV ads I truly enjoyed and some I couldn’t stand.

For the ad recall method, marketers often asked follow-up questions:

  • “Hey, did we get your attention?”
  • And, if so, “Did you like what you saw?”

Today, performance metrics rely on data increasingly hard to ascertain. Privacy regulations and browser changes have taken away some of the fancier metrics marketers once tracked for performance-based digital advertising. 

Meanwhile, programmatic ads have come under fire for placing brand content next to provocative, unethical, or even fraudulent material. So brand safety is now top of mind for marketers who focus on media buys. They’re looking more closely at who gets the impressions and how they’re getting those impressions.

That tension — the need for better insight into who’s seeing what (and where) and the emerging difficulty in tracking data-driven performance — fuels the renewed popularity of attention metrics.

New ways to measure attention

New technologies make attention metrics even more interesting than they were 25 years ago.

Biometric methods involve facial recognition, eye tracking, and even brain waves. Of course, much like focus groups of the past, these measurements usually require a controlled group. But it also requires specialized devices. As you know, people don’t organically hook their brains to their computers — not yet, anyway.

A more popular method combines data signals — dwell time, scroll speed, cursor location, and completion rates, especially for video and audio. These metrics are easier to track. But, since no current standard exists for attention metrics, you must do a lot of interpretation to calculate attention metrics.

Explicit feedback offers another attention metric method. It includes what I term “emotional data” — audiences tell you whether they paid attention to it. You can assess this through immediate feedback surveys or interactivity with paid media.

Perhaps the most interesting trend revolves around the growth of artificial intelligence to consume a combination of metrics. New technology solutions from companies like Lumen Research, Adelaide, and Playground XYZ combine many metrics through machine learning to create more accessible attention metrics for marketers.

Plan to get (and keep) human attention

I’ll add one more thing that makes attention worth paying attention to.

The brand and the authentic, human-sourced content will become a significant differentiator in 2024.

As generative AI scales marketing content from ad creation to derivative content and even aspects of thought leadership, successful companies will lean into their human creators, subject matter experts, and brand to differentiate the experiences they create. Holding attention will be a crucial measurement to understand what works across all forms of content.

This is something I’ll pay attention to. How about you?

HANDPICKED RELATED CONTENT:

Robert Rose consults and hosts workshops on helping marketing teams align their marketing processes to all kinds of technologies – including generative AI. Contact him to learn about those programs.

Cover image by Joseph Kalinowski/Content Marketing Institute

Source link

Keep an eye on what we are doing
Be the first to get latest updates and exclusive content straight to your email inbox.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address

MARKETING

YouTube Ad Specs, Sizes, and Examples [2024 Update]

Published

on

YouTube Ad Specs, Sizes, and Examples

Introduction

With billions of users each month, YouTube is the world’s second largest search engine and top website for video content. This makes it a great place for advertising. To succeed, advertisers need to follow the correct YouTube ad specifications. These rules help your ad reach more viewers, increasing the chance of gaining new customers and boosting brand awareness.

Types of YouTube Ads

Video Ads

  • Description: These play before, during, or after a YouTube video on computers or mobile devices.
  • Types:
    • In-stream ads: Can be skippable or non-skippable.
    • Bumper ads: Non-skippable, short ads that play before, during, or after a video.

Display Ads

  • Description: These appear in different spots on YouTube and usually use text or static images.
  • Note: YouTube does not support display image ads directly on its app, but these can be targeted to YouTube.com through Google Display Network (GDN).

Companion Banners

  • Description: Appears to the right of the YouTube player on desktop.
  • Requirement: Must be purchased alongside In-stream ads, Bumper ads, or In-feed ads.

In-feed Ads

  • Description: Resemble videos with images, headlines, and text. They link to a public or unlisted YouTube video.

Outstream Ads

  • Description: Mobile-only video ads that play outside of YouTube, on websites and apps within the Google video partner network.

Masthead Ads

  • Description: Premium, high-visibility banner ads displayed at the top of the YouTube homepage for both desktop and mobile users.

YouTube Ad Specs by Type

Skippable In-stream Video Ads

  • Placement: Before, during, or after a YouTube video.
  • Resolution:
    • Horizontal: 1920 x 1080px
    • Vertical: 1080 x 1920px
    • Square: 1080 x 1080px
  • Aspect Ratio:
    • Horizontal: 16:9
    • Vertical: 9:16
    • Square: 1:1
  • Length:
    • Awareness: 15-20 seconds
    • Consideration: 2-3 minutes
    • Action: 15-20 seconds

Non-skippable In-stream Video Ads

  • Description: Must be watched completely before the main video.
  • Length: 15 seconds (or 20 seconds in certain markets).
  • Resolution:
    • Horizontal: 1920 x 1080px
    • Vertical: 1080 x 1920px
    • Square: 1080 x 1080px
  • Aspect Ratio:
    • Horizontal: 16:9
    • Vertical: 9:16
    • Square: 1:1

Bumper Ads

  • Length: Maximum 6 seconds.
  • File Format: MP4, Quicktime, AVI, ASF, Windows Media, or MPEG.
  • Resolution:
    • Horizontal: 640 x 360px
    • Vertical: 480 x 360px

In-feed Ads

  • Description: Show alongside YouTube content, like search results or the Home feed.
  • Resolution:
    • Horizontal: 1920 x 1080px
    • Vertical: 1080 x 1920px
    • Square: 1080 x 1080px
  • Aspect Ratio:
    • Horizontal: 16:9
    • Square: 1:1
  • Length:
    • Awareness: 15-20 seconds
    • Consideration: 2-3 minutes
  • Headline/Description:
    • Headline: Up to 2 lines, 40 characters per line
    • Description: Up to 2 lines, 35 characters per line

Display Ads

  • Description: Static images or animated media that appear on YouTube next to video suggestions, in search results, or on the homepage.
  • Image Size: 300×60 pixels.
  • File Type: GIF, JPG, PNG.
  • File Size: Max 150KB.
  • Max Animation Length: 30 seconds.

Outstream Ads

  • Description: Mobile-only video ads that appear on websites and apps within the Google video partner network, not on YouTube itself.
  • Logo Specs:
    • Square: 1:1 (200 x 200px).
    • File Type: JPG, GIF, PNG.
    • Max Size: 200KB.

Masthead Ads

  • Description: High-visibility ads at the top of the YouTube homepage.
  • Resolution: 1920 x 1080 or higher.
  • File Type: JPG or PNG (without transparency).

Conclusion

YouTube offers a variety of ad formats to reach audiences effectively in 2024. Whether you want to build brand awareness, drive conversions, or target specific demographics, YouTube provides a dynamic platform for your advertising needs. Always follow Google’s advertising policies and the technical ad specs to ensure your ads perform their best. Ready to start using YouTube ads? Contact us today to get started!

Keep an eye on what we are doing
Be the first to get latest updates and exclusive content straight to your email inbox.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
Continue Reading

MARKETING

Why We Are Always ‘Clicking to Buy’, According to Psychologists

Published

on

Why We Are Always 'Clicking to Buy', According to Psychologists

Amazon pillows.

(more…)

Keep an eye on what we are doing
Be the first to get latest updates and exclusive content straight to your email inbox.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
Continue Reading

MARKETING

A deeper dive into data, personalization and Copilots

Published

on

A deeper dive into data, personalization and Copilots

Salesforce launched a collection of new, generative AI-related products at Connections in Chicago this week. They included new Einstein Copilots for marketers and merchants and Einstein Personalization.

To better understand, not only the potential impact of the new products, but the evolving Salesforce architecture, we sat down with Bobby Jania, CMO, Marketing Cloud.

Dig deeper: Salesforce piles on the Einstein Copilots

Salesforce’s evolving architecture

It’s hard to deny that Salesforce likes coming up with new names for platforms and products (what happened to Customer 360?) and this can sometimes make the observer wonder if something is brand new, or old but with a brand new name. In particular, what exactly is Einstein 1 and how is it related to Salesforce Data Cloud?

“Data Cloud is built on the Einstein 1 platform,” Jania explained. “The Einstein 1 platform is our entire Salesforce platform and that includes products like Sales Cloud, Service Cloud — that it includes the original idea of Salesforce not just being in the cloud, but being multi-tenancy.”

Data Cloud — not an acquisition, of course — was built natively on that platform. It was the first product built on Hyperforce, Salesforce’s new cloud infrastructure architecture. “Since Data Cloud was on what we now call the Einstein 1 platform from Day One, it has always natively connected to, and been able to read anything in Sales Cloud, Service Cloud [and so on]. On top of that, we can now bring in, not only structured but unstructured data.”

That’s a significant progression from the position, several years ago, when Salesforce had stitched together a platform around various acquisitions (ExactTarget, for example) that didn’t necessarily talk to each other.

“At times, what we would do is have a kind of behind-the-scenes flow where data from one product could be moved into another product,” said Jania, “but in many of those cases the data would then be in both, whereas now the data is in Data Cloud. Tableau will run natively off Data Cloud; Commerce Cloud, Service Cloud, Marketing Cloud — they’re all going to the same operational customer profile.” They’re not copying the data from Data Cloud, Jania confirmed.

Another thing to know is tit’s possible for Salesforce customers to import their own datasets into Data Cloud. “We wanted to create a federated data model,” said Jania. “If you’re using Snowflake, for example, we more or less virtually sit on your data lake. The value we add is that we will look at all your data and help you form these operational customer profiles.”

Let’s learn more about Einstein Copilot

“Copilot means that I have an assistant with me in the tool where I need to be working that contextually knows what I am trying to do and helps me at every step of the process,” Jania said.

For marketers, this might begin with a campaign brief developed with Copilot’s assistance, the identification of an audience based on the brief, and then the development of email or other content. “What’s really cool is the idea of Einstein Studio where our customers will create actions [for Copilot] that we hadn’t even thought about.”

Here’s a key insight (back to nomenclature). We reported on Copilot for markets, Copilot for merchants, Copilot for shoppers. It turns out, however, that there is just one Copilot, Einstein Copilot, and these are use cases. “There’s just one Copilot, we just add these for a little clarity; we’re going to talk about marketing use cases, about shoppers’ use cases. These are actions for the marketing use cases we built out of the box; you can build your own.”

It’s surely going to take a little time for marketers to learn to work easily with Copilot. “There’s always time for adoption,” Jania agreed. “What is directly connected with this is, this is my ninth Connections and this one has the most hands-on training that I’ve seen since 2014 — and a lot of that is getting people using Data Cloud, using these tools rather than just being given a demo.”

What’s new about Einstein Personalization

Salesforce Einstein has been around since 2016 and many of the use cases seem to have involved personalization in various forms. What’s new?

“Einstein Personalization is a real-time decision engine and it’s going to choose next-best-action, next-best-offer. What is new is that it’s a service now that runs natively on top of Data Cloud.” A lot of real-time decision engines need their own set of data that might actually be a subset of data. “Einstein Personalization is going to look holistically at a customer and recommend a next-best-action that could be natively surfaced in Service Cloud, Sales Cloud or Marketing Cloud.”

Finally, trust

One feature of the presentations at Connections was the reassurance that, although public LLMs like ChatGPT could be selected for application to customer data, none of that data would be retained by the LLMs. Is this just a matter of written agreements? No, not just that, said Jania.

“In the Einstein Trust Layer, all of the data, when it connects to an LLM, runs through our gateway. If there was a prompt that had personally identifiable information — a credit card number, an email address — at a mimum, all that is stripped out. The LLMs do not store the output; we store the output for auditing back in Salesforce. Any output that comes back through our gateway is logged in our system; it runs through a toxicity model; and only at the end do we put PII data back into the answer. There are real pieces beyond a handshake that this data is safe.”

Source link

Keep an eye on what we are doing
Be the first to get latest updates and exclusive content straight to your email inbox.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
Continue Reading

Trending