Connect with us

SEO

Everything You Need To Know

Published

on

Everything You Need To Know

Google has just released Bard, its answer to ChatGPT, and users are getting to know it to see how it compares to OpenAI’s artificial intelligence-powered chatbot.

The name ‘Bard’ is purely marketing-driven, as there are no algorithms named Bard, but we do know that the chatbot is powered by LaMDA.

Here is everything we know about Bard so far and some interesting research that may offer an idea of the kind of algorithms that may power Bard.

What Is Google Bard?

Bard is an experimental Google chatbot that is powered by the LaMDA large language model.

It’s a generative AI that accepts prompts and performs text-based tasks like providing answers and summaries and creating various forms of content.

Bard also assists in exploring topics by summarizing information found on the internet and providing links for exploring websites with more information.

Why Did Google Release Bard?

Google released Bard after the wildly successful launch of OpenAI’s ChatGPT, which created the perception that Google was falling behind technologically.

ChatGPT was perceived as a revolutionary technology with the potential to disrupt the search industry and shift the balance of power away from Google search and the lucrative search advertising business.

On December 21, 2022, three weeks after the launch of ChatGPT, the New York Times reported that Google had declared a “code red” to quickly define its response to the threat posed to its business model.

Forty-seven days after the code red strategy adjustment, Google announced the launch of Bard on February 6, 2023.

What Was The Issue With Google Bard?

The announcement of Bard was a stunning failure because the demo that was meant to showcase Google’s chatbot AI contained a factual error.

The inaccuracy of Google’s AI turned what was meant to be a triumphant return to form into a humbling pie in the face.

Google’s shares subsequently lost a hundred billion dollars in market value in a single day, reflecting a loss of confidence in Google’s ability to navigate the looming era of AI.

How Does Google Bard Work?

Bard is powered by a “lightweight” version of LaMDA.

LaMDA is a large language model that is trained on datasets consisting of public dialogue and web data.

There are two important factors related to the training described in the associated research paper, which you can download as a PDF here: LaMDA: Language Models for Dialog Applications (read the abstract here).

  • A. Safety: The model achieves a level of safety by tuning it with data that was annotated by crowd workers.
  • B. Groundedness: LaMDA grounds itself factually with external knowledge sources (through information retrieval, which is search).

The LaMDA research paper states:

“…factual grounding, involves enabling the model to consult external knowledge sources, such as an information retrieval system, a language translator, and a calculator.

We quantify factuality using a groundedness metric, and we find that our approach enables the model to generate responses grounded in known sources, rather than responses that merely sound plausible.”

Google used three metrics to evaluate the LaMDA outputs:

  1. Sensibleness: A measurement of whether an answer makes sense or not.
  2. Specificity: Measures if the answer is the opposite of generic/vague or contextually specific.
  3. Interestingness: This metric measures if LaMDA’s answers are insightful or inspire curiosity.

All three metrics were judged by crowdsourced raters, and that data was fed back into the machine to keep improving it.

The LaMDA research paper concludes by stating that crowdsourced reviews and the system’s ability to fact-check with a search engine were useful techniques.

Google’s researchers wrote:

“We find that crowd-annotated data is an effective tool for driving significant additional gains.

We also find that calling external APIs (such as an information retrieval system) offers a path towards significantly improving groundedness, which we define as the extent to which a generated response contains claims that can be referenced and checked against a known source.”

How Is Google Planning To Use Bard In Search?

The future of Bard is currently envisioned as a feature in search.

Google’s announcement in February was insufficiently specific on how Bard would be implemented.

The key details were buried in a single paragraph close to the end of the blog announcement of Bard, where it was described as an AI feature in search.

That lack of clarity fueled the perception that Bard would be integrated into search, which was never the case.

Google’s February 2023 announcement of Bard states that Google will at some point integrate AI features into search:

“Soon, you’ll see AI-powered features in Search that distill complex information and multiple perspectives into easy-to-digest formats, so you can quickly understand the big picture and learn more from the web: whether that’s seeking out additional perspectives, like blogs from people who play both piano and guitar, or going deeper on a related topic, like steps to get started as a beginner.

These new AI features will begin rolling out on Google Search soon.”

It’s clear that Bard is not search. Rather, it is intended to be a feature in search and not a replacement for search.

What Is A Search Feature?

A feature is something like Google’s Knowledge Panel, which provides knowledge information about notable people, places, and things.

Google’s “How Search Works” webpage about features explains:

“Google’s search features ensure that you get the right information at the right time in the format that’s most useful to your query.

Sometimes it’s a webpage, and sometimes it’s real-world information like a map or inventory at a local store.”

In an internal meeting at Google (reported by CNBC), employees questioned the use of Bard in search.

One employee pointed out that large language models like ChatGPT and Bard are not fact-based sources of information.

The Google employee asked:

“Why do we think the big first application should be search, which at its heart is about finding true information?”

Jack Krawczyk, the product lead for Google Bard, answered:

“I just want to be very clear: Bard is not search.”

At the same internal event, Google’s Vice President of Engineering for Search, Elizabeth Reid, reiterated that Bard is not search.

She said:

“Bard is really separate from search…”

What we can confidently conclude is that Bard is not a new iteration of Google search. It is a feature.

Bard Is An Interactive Method For Exploring Topics

Google’s announcement of Bard was fairly explicit that Bard is not search. This means that, while search surfaces links to answers, Bard helps users investigate knowledge.

The announcement explains:

“When people think of Google, they often think of turning to us for quick factual answers, like ‘how many keys does a piano have?’

But increasingly, people are turning to Google for deeper insights and understanding – like, ‘is the piano or guitar easier to learn, and how much practice does each need?’

Learning about a topic like this can take a lot of effort to figure out what you really need to know, and people often want to explore a diverse range of opinions or perspectives.”

It may be helpful to think of Bard as an interactive method for accessing knowledge about topics.

Bard Samples Web Information

The problem with large language models is that they mimic answers, which can lead to factual errors.

The researchers who created LaMDA state that approaches like increasing the size of the model can help it gain more factual information.

But they noted that this approach fails in areas where facts are constantly changing during the course of time, which researchers refer to as the “temporal generalization problem.”

Freshness in the sense of timely information cannot be trained with a static language model.

The solution that LaMDA pursued was to query information retrieval systems. An information retrieval system is a search engine, so LaMDA checks search results.

This feature from LaMDA appears to be a feature of Bard.

The Google Bard announcement explains:

“Bard seeks to combine the breadth of the world’s knowledge with the power, intelligence, and creativity of our large language models.

It draws on information from the web to provide fresh, high-quality responses.”

Screenshot of a Google Bard Chat, March 2023

LaMDA and (possibly by extension) Bard achieve this with what is called the toolset (TS).

The toolset is explained in the LaMDA researcher paper:

“We create a toolset (TS) that includes an information retrieval system, a calculator, and a translator.

TS takes a single string as input and outputs a list of one or more strings. Each tool in TS expects a string and returns a list of strings.

For example, the calculator takes “135+7721”, and outputs a list containing [“7856”]. Similarly, the translator can take “hello in French” and output [‘Bonjour’].

Finally, the information retrieval system can take ‘How old is Rafael Nadal?’, and output [‘Rafael Nadal / Age / 35’].

The information retrieval system is also capable of returning snippets of content from the open web, with their corresponding URLs.

The TS tries an input string on all of its tools, and produces a final output list of strings by concatenating the output lists from every tool in the following order: calculator, translator, and information retrieval system.

A tool will return an empty list of results if it can’t parse the input (e.g., the calculator cannot parse ‘How old is Rafael Nadal?’), and therefore does not contribute to the final output list.”

Here’s a Bard response with a snippet from the open web:

Google Bard: Everything You Need To KnowScreenshot of a Google Bard Chat, March 2023

Conversational Question-Answering Systems

There are no research papers that mention the name “Bard.”

However, there is quite a bit of recent research related to AI, including by scientists associated with LaMDA, that may have an impact on Bard.

The following doesn’t claim that Google is using these algorithms. We can’t say for certain that any of these technologies are used in Bard.

The value in knowing about these research papers is in knowing what is possible.

The following are algorithms relevant to AI-based question-answering systems.

One of the authors of LaMDA worked on a project that’s about creating training data for a conversational information retrieval system.

You can download the 2022 research paper as a PDF here: Dialog Inpainting: Turning Documents into Dialogs (and read the abstract here).

The problem with training a system like Bard is that question-and-answer datasets (like datasets comprised of questions and answers found on Reddit) are limited to how people on Reddit behave.

It doesn’t encompass how people outside of that environment behave and the kinds of questions they would ask, and what the correct answers to those questions would be.

The researchers explored creating a system read webpages, then used a “dialog inpainter” to predict what questions would be answered by any given passage within what the machine was reading.

A passage in a trustworthy Wikipedia webpage that says, “The sky is blue,” could be turned into the question, “What color is the sky?”

The researchers created their own dataset of questions and answers using Wikipedia and other webpages. They called the datasets WikiDialog and WebDialog.

  • WikiDialog is a set of questions and answers derived from Wikipedia data.
  • WebDialog is a dataset derived from webpage dialog on the internet.

These new datasets are 1,000 times larger than existing datasets. The importance of that is it gives conversational language models an opportunity to learn more.

The researchers reported that this new dataset helped to improve conversational question-answering systems by over 40%.

The research paper describes the success of this approach:

“Importantly, we find that our inpainted datasets are powerful sources of training data for ConvQA systems…

When used to pre-train standard retriever and reranker architectures, they advance state-of-the-art across three different ConvQA retrieval benchmarks (QRECC, OR-QUAC, TREC-CAST), delivering up to 40% relative gains on standard evaluation metrics…

Remarkably, we find that just pre-training on WikiDialog enables strong zero-shot retrieval performance—up to 95% of a finetuned retriever’s performance—without using any in-domain ConvQA data. “

Is it possible that Google Bard was trained using the WikiDialog and WebDialog datasets?

It’s difficult to imagine a scenario where Google would pass on training a conversational AI on a dataset that is over 1,000 times larger.

But we don’t know for certain because Google doesn’t often comment on its underlying technologies in detail, except on rare occasions like for Bard or LaMDA.

Large Language Models That Link To Sources

Google recently published an interesting research paper about a way to make large language models cite the sources for their information. The initial version of the paper was published in December 2022, and the second version was updated in February 2023.

This technology is referred to as experimental as of December 2022.

You can download the PDF of the paper here: Attributed Question Answering: Evaluation and Modeling for Attributed Large Language Models (read the Google abstract here).

The research paper states the intent of the technology:

“Large language models (LLMs) have shown impressive results while requiring little or no direct supervision.

Further, there is mounting evidence that LLMs may have potential in information-seeking scenarios.

We believe the ability of an LLM to attribute the text that it generates is likely to be crucial in this setting.

We formulate and study Attributed QA as a key first step in the development of attributed LLMs.

We propose a reproducible evaluation framework for the task and benchmark a broad set of architectures.

We take human annotations as a gold standard and show that a correlated automatic metric is suitable for development.

Our experimental work gives concrete answers to two key questions (How to measure attribution?, and How well do current state-of-the-art methods perform on attribution?), and give some hints as to how to address a third (How to build LLMs with attribution?).”

This kind of large language model can train a system that can answer with supporting documentation that, theoretically, assures that the response is based on something.

The research paper explains:

“To explore these questions, we propose Attributed Question Answering (QA). In our formulation, the input to the model/system is a question, and the output is an (answer, attribution) pair where answer is an answer string, and attribution is a pointer into a fixed corpus, e.g., of paragraphs.

The returned attribution should give supporting evidence for the answer.”

This technology is specifically for question-answering tasks.

The goal is to create better answers – something that Google would understandably want for Bard.

  • Attribution allows users and developers to assess the “trustworthiness and nuance” of the answers.
  • Attribution allows developers to quickly review the quality of the answers since the sources are provided.

One interesting note is a new technology called AutoAIS that strongly correlates with human raters.

In other words, this technology can automate the work of human raters and scale the process of rating the answers given by a large language model (like Bard).

The researchers share:

“We consider human rating to be the gold standard for system evaluation, but find that AutoAIS correlates well with human judgment at the system level, offering promise as a development metric where human rating is infeasible, or even as a noisy training signal. “

This technology is experimental; it’s probably not in use. But it does show one of the directions that Google is exploring for producing trustworthy answers.

Research Paper On Editing Responses For Factuality

Lastly, there’s a remarkable technology developed at Cornell University (also dating from the end of 2022) that explores a different way to source attribution for what a large language model outputs and can even edit an answer to correct itself.

Cornell University (like Stanford University) licenses technology related to search and other areas, earning millions of dollars per year.

It’s good to keep up with university research because it shows what is possible and what is cutting-edge.

You can download a PDF of the paper here: RARR: Researching and Revising What Language Models Say, Using Language Models (and read the abstract here).

The abstract explains the technology:

“Language models (LMs) now excel at many tasks such as few-shot learning, question answering, reasoning, and dialog.

However, they sometimes generate unsupported or misleading content.

A user cannot easily determine whether their outputs are trustworthy or not, because most LMs do not have any built-in mechanism for attribution to external evidence.

To enable attribution while still preserving all the powerful advantages of recent generation models, we propose RARR (Retrofit Attribution using Research and Revision), a system that 1) automatically finds attribution for the output of any text generation model and 2) post-edits the output to fix unsupported content while preserving the original output as much as possible.

…we find that RARR significantly improves attribution while otherwise preserving the original input to a much greater degree than previously explored edit models.

Furthermore, the implementation of RARR requires only a handful of training examples, a large language model, and standard web search.”

How Do I Get Access To Google Bard?

Google is currently accepting new users to test Bard, which is currently labeled as experimental. Google is rolling out access for Bard here.

Google Bard is ExperimentalScreenshot from bard.google.com, March 2023

Google is on the record saying that Bard is not search, which should reassure those who feel anxiety about the dawn of AI.

We are at a turning point that is unlike any we’ve seen in, perhaps, a decade.

Understanding Bard is helpful to anyone who publishes on the web or practices SEO because it’s helpful to know the limits of what is possible and the future of what can be achieved.

More Resources:


Featured Image: Whyredphotographor/Shutterstock



Source link

Keep an eye on what we are doing
Be the first to get latest updates and exclusive content straight to your email inbox.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address

SEO

HubSpot Rolls Out AI-Powered Marketing Tools

Published

on

By

HubSpot Rolls Out AI-Powered Marketing Tools

HubSpot announced a push into AI this week at its annual Inbound marketing conference, launching “Breeze.”

Breeze is an artificial intelligence layer integrated across the company’s marketing, sales, and customer service software.

According to HubSpot, the goal is to provide marketers with easier, faster, and more unified solutions as digital channels become oversaturated.

Karen Ng, VP of Product at HubSpot, tells Search Engine Journal in an interview:

“We’re trying to create really powerful tools for marketers to rise above the noise that’s happening now with a lot of this AI-generated content. We might help you generate titles or a blog content…but we do expect kind of a human there to be a co-assist in that.”

Breeze AI Covers Copilot, Workflow Agents, Data Enrichment

The Breeze layer includes three main components.

Breeze Copilot

An AI assistant that provides personalized recommendations and suggestions based on data in HubSpot’s CRM.

Ng explained:

“It’s a chat-based AI companion that assists with tasks everywhere – in HubSpot, the browser, and mobile.”

Breeze Agents

A set of four agents that can automate entire workflows like content generation, social media campaigns, prospecting, and customer support without human input.

Ng added the following context:

“Agents allow you to automate a lot of those workflows. But it’s still, you know, we might generate for you a content backlog. But taking a look at that content backlog, and knowing what you publish is still a really important key of it right now.”

Breeze Intelligence

Combines HubSpot customer data with third-party sources to build richer profiles.

Ng stated:

“It’s really important that we’re bringing together data that can be trusted. We know your AI is really only as good as the data that it’s actually trained on.”

Addressing AI Content Quality

While prioritizing AI-driven productivity, Ng acknowledged the need for human oversight of AI content:

“We really do need eyes on it still…We think of that content generation as still human-assisted.”

Marketing Hub Updates

Beyond Breeze, HubSpot is updating Marketing Hub with tools like:

  • Content Remix to repurpose videos into clips, audio, blogs, and more.
  • AI video creation via integration with HeyGen
  • YouTube and Instagram Reels publishing
  • Improved marketing analytics and attribution

The announcements signal HubSpot’s AI-driven vision for unifying customer data.

But as Ng tells us, “We definitely think a lot about the data sources…and then also understand your business.”

HubSpot’s updates are rolling out now, with some in public beta.


Featured Image: Poetra.RH/Shutterstock

Source link

Keep an eye on what we are doing
Be the first to get latest updates and exclusive content straight to your email inbox.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
Continue Reading

SEO

Holistic Marketing Strategies That Drive Revenue [SaaS Case Study]

Published

on

By

Holistic Marketing Strategies That Drive Revenue [SaaS Case Study]

Brands are seeing success driving quality pipeline and revenue growth. It’s all about building an intentional customer journey, aligning sales + marketing, plus measuring ROI. 

Check out this executive panel on-demand, as we show you how we do it. 

With Ryann Hogan, senior demand generation manager at CallRail, and our very own Heather Campbell and Jessica Cromwell, we chatted about driving demand, lead gen, revenue, and proper attribution

This B2B leadership forum provided insights you can use in your strategy tomorrow, like:

  • The importance of the customer journey, and the keys to matching content to your ideal personas.
  • How to align marketing and sales efforts to guide leads through an effective journey to conversion.
  • Methods to measure ROI and determine if your strategies are delivering results.

While the case study is SaaS, these strategies are for any brand.

Watch on-demand and be part of the conversation. 

Join Us For Our Next Webinar!

Navigating SERP Complexity: How to Leverage Search Intent for SEO

Join us live as we break down all of these complexities and reveal how to identify valuable opportunities in your space. We’ll show you how to tap into the searcher’s motivation behind each query (and how Google responds to it in kind).

Source link

Keep an eye on what we are doing
Be the first to get latest updates and exclusive content straight to your email inbox.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
Continue Reading

SEO

What Marketers Need to Learn From Hunter S. Thompson

Published

on

What Marketers Need to Learn From Hunter S. Thompson

We’ve passed the high-water mark of content marketing—at least, content marketing in its current form.

After thirteen years in content marketing, I think it’s fair to say that most of the content on company blogs was created by people with zero firsthand experience of their subject matter. We have built a profession of armchair commentators, a class of marketers who exist almost entirely in a world of theory and abstraction.

I count myself among their number. I have hundreds of bylines about subfloor moisture management, information security, SaaS pricing models, agency resource management. I am an expert in none of these topics.

This has been the happy reality of content marketing for over a decade, a natural consequence of the incentives created by early Google Search. Historically, being a great content marketer required precisely no subject matter expertise. It was enough to read widely and write quickly.

Mountains of organic traffic have been built on the backs of armchair commentators like myself. Time spent doing deep, detailed research was, generally speaking, wasted, because 80% of the returns came from simply shuffling other people’s ideas around and slapping a few keyword-targeted H2s in the right places.

But this doesn’t work today.

For all of its flaws, generative AI is an excellent, truly world-class armchair commentator. If the job-to-be-done is reading a dozen articles and how-to’s and turning them into something semi-original and fairly coherent, AI really is the best tool for the job. Humans cannot out-copycat generative AI.

Put another way, the role of the content marketer as a curator has been rendered obsolete. So where do we go from here?

“The only way to write honestly about the scene is to be part of it.”
—Hunter S. Thompson, Hell’s Angels“The only way to write honestly about the scene is to be part of it.”
—Hunter S. Thompson, Hell’s Angels

Hunter S. Thompson popularised the idea of gonzo journalism, “a style of journalism that is written without claims of objectivity, often including the reporter as part of the story using a first-person narrative.”

In other words, Hunter was the story.

When asked to cover the rising phenomenon of the Hell’s Angels, he became a Hell’s Angel. During his coverage of the ‘72 presidential campaign, he openly supported his preferred candidate, George McGovern, and actively disparaged Richard Nixon. His chronicle of the Kentucky Derby focused almost entirely on his own debauchery and chaos-making—a story that has outlasted any factual account of the race itself.

In the same vein, content marketers today need to become their stories.

It’s a content marketing truism that it’s unreasonable to expect writers to become experts. There’s a superficial level of truth to that claim—no content marketer can acquire a decade’s worth of experience in a few days or weeks—but there are great benefits awaiting any company willing to challenge that truism very, very seriously.

As Thompson proved, short, intense periods of firsthand experience can yield incredible insights and stories. So what would happen if you radically reduced your content output and dedicated half of your content team’s time to research and experimentation? If their job was doing things worth writing about, instead of just writing? If skin-in-the-game, no matter how small, was a prerequisite of the role?

We’re already seeing this shift.

“The closest analogy to the ideal would be a film director/producer who writes his own scripts, does his own camera work and somehow manages to film himself in action, as the protagonist or at least a main character.”
—Hunter S. Thompson, The Great Shark Hunt“The closest analogy to the ideal would be a film director/producer who writes his own scripts, does his own camera work and somehow manages to film himself in action, as the protagonist or at least a main character.”
—Hunter S. Thompson, The Great Shark Hunt

Every week, I see more companies hiring marketers who are true, bonafide subject matter experts (I include the Ahrefs content team here—for the majority of our team, “writing” is a skill secondary to a decade of hands-on search and marketing experience). They are expensive, hard to find, and in the era of AI, worth every cent.

I see a growing expectation that marketers will document their experiences and experiments on social media, creating meta-content that often outperforms the “real” content. I see more companies willing to share subjective experiences and stories, and avoid competing solely on the sharing of objective, factual information. I see companies spending money to promote the personal brands of in-house creators, actively encouraging parasocial relationships as their corporate brand accounts lay dormant.

These are ideas that made no sense in the old model of content marketing, but they make much more sense today. This level of effort is fast becoming the only way to gain any kind of moat, creating material that doesn’t already exist on a dozen other company blogs.

In the era of information abundance, our need for information is relatively easy to sate; but we have a near-limitless hunger for entertainment, and personal interaction, and weird, pattern-interrupting experiences.

Gonzo content marketing can deliver.

“But what was the story? Nobody had bothered to say. So we would have to drum it up on our own.”
—Hunter S. Thompson, Fear and Loathing in Las Vegas“But what was the story? Nobody had bothered to say. So we would have to drum it up on our own.”
—Hunter S. Thompson, Fear and Loathing in Las Vegas

 

Source link

Keep an eye on what we are doing
Be the first to get latest updates and exclusive content straight to your email inbox.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
Continue Reading

Trending