Connect with us

SEO

Are Internal Links A Ranking Factor?

Published

on

Are Internal Links A Ranking Factor?

You hear about internal links all the time. But how important are they?

Do internal links affect search rankings, and if so, how can you best optimize them for SEO?

That is what we will explore by diving into Google Search Central, patents, tweets, and office hour videos.

The Claim: Internal Links As A Ranking Factor

What are internal links?

Internal links are simply hypertext links connecting two pages on the same domain. For example:

  • A link from one Search Engine Journal article to another within the searchenginejournal.com domain would be an internal link.
  • A link from a Search Engine Journal article to an article on Google Search Central would be an external link.

Peruse articles from the top SEO blogs and experienced marketers. You will likely find advice on properly optimizing internal links to increase visibility for your key pages in search results. For example:

[Recommended Read:] Google Ranking Factors: Fact or Fiction

The Evidence For Internal Links As A Ranking Factor

Google’s page on How Search Works explains how links help Google discover new content.

“Because the web and other content is constantly changing, our crawling processes are always running to keep up. They learn how often content they’ve seen before seems to change and revisit as needed. They also discover new content as new links to those pages or information appear.”

In 2017, Gary Illyes, Chief of Sunshine and Happiness at Google, was asked if breadcrumb navigation links passed value. His response:

“We like them. We treat them as normal links in, e.g., PageRank computation.”

It sounds like he confirmed that internal links could influence a page’s performance in search results.

Does Google look at the anchor text of internal links? John Mueller, Search Advocate at Google,  tweeted a response to this question later in 2017:

“Most links do provide a bit of additional context through their anchor text. At least they should, right‽”

During a Google Webmaster Central Office Hours Hangout in 2018, Mueller was asked if updating the anchor text of internal links to help users could affect rankings.

He responded that if you were making the anchor text more useful to users, it would also be more beneficial for search engine crawlers.

Later in 2018, when asked about ranking changes related to mobile-first indexing, Mueller stated, “…if your mobile site doesn’t have all of the content you need for ranking (including internal links, images, etc.), then that could have an effect.”

On Twitter, in response to a question about the results of a Lighthouse audit in 2020, Mueller said, “…internal links with useful anchor text help users, and they help search engines.”

In a Google Webmaster Central Office Hours later in 2020, Mueller was asked how internal linking would work for two pages about cheese on the same website. He noted that there didn’t need to be a change to the anchor text that separated a page to buy cheese from a guide to cheeses.

In 2021, during Google SEO Office Hours, Mueller discussed how Google might choose a website’s homepage, category page, or other pages as the most relevant for a specific keyword search result.

He suggests you use internal linking to let Google know the most important pages on a website. For example, if you have one more important product to your business than others, link to that product specifically from your homepage and other essential pages throughout your website.

This would help Google recognize that one product is more important than the others on the site.

Mueller answered another question about internal links in 2021. Are internal links diluted if you use too many on a page?

Mueller’s response ultimately boiled down to site structure. If Google can still understand the site structure and see the differentiation in the importance of some pages over others, then the number of internal links is acceptable. He gives a similar answer to this question again in 2022.

In 2022, Mueller was asked if placing a link in a header, footer, or content makes a difference. He responded that it didn’t mean anything. He answered similar questions during future office hours.

Later, in March 2022, Mueller was asked if internal links are still crucial to SEO if structured data for breadcrumbs are present. He states that “…internal linking is super critical to SEO.” He calls it one of the biggest things you can do on a website to guide Google to your most important content.

The evidence is pretty straightforward. Internal links help people and search engines understand your site. Google gives internal links weight and uses them to help determine which pages are your most important.

So, what makes a good internal link?

[Learn More:] Google Ranking Factor Insights

Google’s Advice For Effective Internal Links

Many of the Google employees’ responses focused on improving users’ experience and helping search engines understand your site. What are the most effective ways to indicate your essential pages using internal links?

Google’s documentation provides clear answers.

Google’s explanation for How Search Works For Site Owners reiterates the role that links play in helping Google discover new content.

“The first stage is finding out what pages exist on the web. There isn’t a central registry of all webpages, so Google must constantly look for new and updated pages and add them to its list of known pages. This process is called ‘URL discovery.’

Some pages are known because Google has already visited them. Other pages are discovered when Google follows a link from a known page to a new page: for example, a hub page, such as a category page, links to a new blog post.”

They recommend that creators use Google Search Console to learn how to make their site more accessible to crawlers. GSC offers reports that help website owners identify their top-linked pages and pages with the most internal links.

Google’s official Search Engine Optimization (SEO) Starter Guide discusses internal linking, beginning with the use of breadcrumbs.

“A breadcrumb is a row of internal links at the top or bottom of the page that allows visitors to quickly navigate back to a previous section or the root page. Many breadcrumbs have the most general page (usually the root page) as the first, leftmost link and list the more specific sections out to the right. We recommend using breadcrumb structured data markup when showing breadcrumbs.”

The guide also references internal links as part of a naturally flowing hierarchy.

“Make it as easy as possible for users to go from general content to the more specific content they want on your site. Add navigation pages when it makes sense and effectively work these into your internal link structure. Make sure all of the pages on your site are reachable through links, and that they don’t require an internal search functionality to be found. Link to related pages, where appropriate, to allow users to discover similar content.”

As for advice on how to help your website’s SEO, Google recommends writing good link text.

“Links on your page may be internal – pointing to other pages on your site – or external – leading to content on other sites. In either of these cases, the better your anchor text is, the easier it is for users to navigate and for Google to understand what the page you’re linking to is about.”

It continues:

“You may usually think about linking in terms of pointing to outside websites, but paying more attention to the anchor text used for internal links can help users, and Google navigate your site better.”

Of course, Google also warns not to use “excessively keyword-filled or lengthy anchor text just for search engines” or links that don’t help users with navigation throughout the website.

In a Google Search Central Blog article from 2008, Google discusses the importance of link architecture.

“Link architecture – the method of internal linking on your site – is a crucial step in site design if you want your site indexed by search engines. It plays a critical role in Googlebot’s ability to find your site’s pages and ensures that your visitors can navigate and enjoy your site.”

The article goes on to answer questions about internal linking. The answers, in short:

  • Google doesn’t recommend using nofollow with internal links for PageRank sculpting or siloing.
  • Google doesn’t have a problem with cross-themed internal linking, such as a website discussing biking and camping.

Under Advanced SEO documentation, Google discusses the importance of internal links for your website’s sitelinks in search results.

“Ensure that your internal links’ anchor text is concise and relevant to the page they’re pointing to.”

In another Google Search Central Blog article from 2010 offering website advice for non-profits, Google noted that:

“20% of our submissions could improve their sites by improving the anchor text used in some of their internal links. When writing anchor text, keep two things in mind:

  • Be descriptive: Use words relevant to the destination page, avoiding generic phrases like “click here” or “article.” Make sure the user can get a snapshot of the destination page’s overall content and functionality by reading the anchor text.
  • Keep it concise: Anchor text that contains a few words or a short phrase is more attractive and convenient for users to read than a sentence or paragraph-long link.”

Does the number of internal links matter?

Matt Cutts, former head of Google’s webspam team, answered this question in a Google Search Central video in 2013. He responded that internal links would not cause trouble. Website templates and architecture will naturally lead to many internal links with matching anchor text. So long as it is natural and for user experience, it is okay.

[Deep Dive:] Your Complete Guide To Google Ranking Factors

Our Verdict: Internal Links Are A Ranking Factor

Google’s documentation about how search works and its starter guide on how site owners can help Google understand their content explain internal links’ importance.

You can also find advice on Twitter and YouTube from Google representatives about optimizing internal links to help Google determine the most critical pages on your website.

Internal links are a part of the ranking factors that help determine where your webpages will rank in search results.


Featured Image: Paulo Bobita/Search Engine Journal

Ranking Factors: Fact Or Fiction? Let’s Bust Some Myths! [Ebook]



Source link

SEO

Essential Functions For SEO Data Analysis

Published

on

Essential Functions For SEO Data Analysis

Learning to code, whether with PythonJavaScript, or another programming language, has a whole host of benefits, including the ability to work with larger datasets and automate repetitive tasks.

But despite the benefits, many SEO professionals are yet to make the transition – and I completely understand why! It isn’t an essential skill for SEO, and we’re all busy people.

If you’re pressed for time, and you already know how to accomplish a task within Excel or Google Sheets, then changing tack can feel like reinventing the wheel.

When I first started coding, I initially only used Python for tasks that I couldn’t accomplish in Excel – and it’s taken several years to get to the point where it’s my defacto choice for data processing.

Looking back, I’m incredibly glad that I persisted, but at times it was a frustrating experience, with many an hour spent scanning threads on Stack Overflow.

This post is designed to spare other SEO pros the same fate.

Within it, we’ll cover the Python equivalents of the most commonly used Excel formulas and features for SEO data analysis – all of which are available within a Google Colab notebook linked in the summary.

Specifically, you’ll learn the equivalents of:

  • LEN.
  • Drop Duplicates.
  • Text to Columns.
  • SEARCH/FIND.
  • CONCATENATE.
  • Find and Replace.
  • LEFT/MID/RIGHT.
  • IF.
  • IFS.
  • VLOOKUP.
  • COUNTIF/SUMIF/AVERAGEIF.
  • Pivot Tables.

Amazingly, to accomplish all of this, we’ll primarily be using a singular library – Pandas – with a little help in places from its big brother, NumPy.

Prerequisites

For the sake of brevity, there are a few things we won’t be covering today, including:

  • Installing Python.
  • Basic Pandas, like importing CSVs, filtering, and previewing dataframes.

If you’re unsure about any of this, then Hamlet’s guide on Python data analysis for SEO is the perfect primer.

Now, without further ado, let’s jump in.

LEN

LEN provides a count of the number of characters within a string of text.

For SEO specifically, a common use case is to measure the length of title tags or meta descriptions to determine whether they’ll be truncated in search results.

Within Excel, if we wanted to count the second cell of column A, we’d enter:

=LEN(A2)
Screenshot from Microsoft Excel, November 2022

Python isn’t too dissimilar, as we can rely on the inbuilt len function, which can be combined with Pandas’ loc[] to access a specific row of data within a column:

len(df['Title'].loc[0])

In this example, we’re getting the length of the first row in the “Title” column of our dataframe.

len function python
Screenshot of VS Code, November, 2022

Finding the length of a cell isn’t that useful for SEO, though. Normally, we’d want to apply a function to an entire column!

In Excel, this would be achieved by selecting the formula cell on the bottom right-hand corner and either dragging it down or double-clicking.

When working with a Pandas dataframe, we can use str.len to calculate the length of rows within a series, then store the results in a new column:

df['Length'] = df['Title'].str.len()

Str.len is a ‘vectorized’ operation, which is designed to be applied simultaneously to a series of values. We’ll use these operations extensively throughout this article, as they almost universally end up being faster than a loop.

Another common application of LEN is to combine it with SUBSTITUTE to count the number of words in a cell:

=LEN(TRIM(A2))-LEN(SUBSTITUTE(A2," ",""))+1

In Pandas, we can achieve this by combining the str.split and str.len functions together:

df['No. Words'] = df['Title'].str.split().str.len()

We’ll cover str.split in more detail later, but essentially, what we’re doing is splitting our data based upon whitespaces within the string, then counting the number of component parts.

word count PythonScreenshot from VS Code, November 2022

Dropping Duplicates

Excel’s ‘Remove Duplicates’ feature provides an easy way to remove duplicate values within a dataset, either by deleting entirely duplicate rows (when all columns are selected) or removing rows with the same values in specific columns.

Excel drop duplicatesScreenshot from Microsoft Excel, November 2022

In Pandas, this functionality is provided by drop_duplicates.

To drop duplicate rows within a dataframe type:

df.drop_duplicates(inplace=True)

To drop rows based on duplicates within a singular column, include the subset parameter:

df.drop_duplicates(subset="column", inplace=True)

Or specify multiple columns within a list:

df.drop_duplicates(subset=['column','column2'], inplace=True)

One addition above that’s worth calling out is the presence of the inplace parameter. Including inplace=True allows us to overwrite our existing dataframe without needing to create a new one.

There are, of course, times when we want to preserve our raw data. In this case, we can assign our deduped dataframe to a different variable:

df2 = df.drop_duplicates(subset="column")

Text To Columns

Another everyday essential, the ‘text to columns’ feature can be used to split a text string based on a delimiter, such as a slash, comma, or whitespace.

As an example, splitting a URL into its domain and individual subfolders.

Excel drop duplicatesScreenshot from Microsoft Excel, November 2022

When dealing with a dataframe, we can use the str.split function, which creates a list for each entry within a series. This can be converted into multiple columns by setting the expand parameter to True:

df['URL'].str.split(pat="/", expand=True)
str split PythonScreenshot from VS Code, November 2022

As is often the case, our URLs in the image above have been broken up into inconsistent columns, because they don’t feature the same number of folders.

This can make things tricky when we want to save our data within an existing dataframe.

Specifying the n parameter limits the number of splits, allowing us to create a specific number of columns:

df[['Domain', 'Folder1', 'Folder2', 'Folder3']] = df['URL'].str.split(pat="/", expand=True, n=3)

Another option is to use pop to remove your column from the dataframe, perform the split, and then re-add it with the join function:

df = df.join(df.pop('Split').str.split(pat="/", expand=True))

Duplicating the URL to a new column before the split allows us to preserve the full URL. We can then rename the new columns:🐆

df['Split'] = df['URL']

df = df.join(df.pop('Split').str.split(pat="/", expand=True))

df.rename(columns = {0:'Domain', 1:'Folder1', 2:'Folder2', 3:'Folder3', 4:'Parameter'}, inplace=True)
Split pop join functions PythonScreenshot from VS Code, November 2022

CONCATENATE

The CONCAT function allows users to combine multiple strings of text, such as when generating a list of keywords by adding different modifiers.

In this case, we’re adding “mens” and whitespace to column A’s list of product types:

=CONCAT($F$1," ",A2)
concat Excel
Screenshot from Microsoft Excel, November 2022

Assuming we’re dealing with strings, the same can be achieved in Python using the arithmetic operator:

df['Combined] = 'mens' + ' ' + df['Keyword']

Or specify multiple columns of data:

df['Combined'] = df['Subdomain'] + df['URL']
concat PythonScreenshot from VS Code, November 2022

Pandas has a dedicated concat function, but this is more useful when trying to combine multiple dataframes with the same columns.

For instance, if we had multiple exports from our favorite link analysis tool:

df = pd.read_csv('data.csv')
df2 = pd.read_csv('data2.csv')
df3 = pd.read_csv('data3.csv')

dflist = [df, df2, df3]

df = pd.concat(dflist, ignore_index=True)

SEARCH/FIND

The SEARCH and FIND formulas provide a way of locating a substring within a text string.

These commands are commonly combined with ISNUMBER to create a Boolean column that helps filter down a dataset, which can be extremely helpful when performing tasks like log file analysis, as explained in this guide. E.g.:

=ISNUMBER(SEARCH("searchthis",A2)
isnumber search ExcelScreenshot from Microsoft Excel, November 2022

The difference between SEARCH and FIND is that find is case-sensitive.

The equivalent Pandas function, str.contains, is case-sensitive by default:

df['Journal'] = df['URL'].str.contains('engine', na=False)

Case insensitivity can be enabled by setting the case parameter to False:

df['Journal'] = df['URL'].str.contains('engine', case=False, na=False)

In either scenario, including na=False will prevent null values from being returned within the Boolean column.

One massive advantage of using Pandas here is that, unlike Excel, regex is natively supported by this function – as it is in Google sheets via REGEXMATCH.

Chain together multiple substrings by using the pipe character, also known as the OR operator:

df['Journal'] = df['URL'].str.contains('engine|search', na=False)

Find And Replace

Excel’s “Find and Replace” feature provides an easy way to individually or bulk replace one substring with another.

find replace ExcelScreenshot from Microsoft Excel, November 2022

When processing data for SEO, we’re most likely to select an entire column and “Replace All.”

The SUBSTITUTE formula provides another option here and is useful if you don’t want to overwrite the existing column.

As an example, we can change the protocol of a URL from HTTP to HTTPS, or remove it by replacing it with nothing.

When working with dataframes in Python, we can use str.replace:

df['URL'] = df['URL'].str.replace('http://', 'https://')

Or:

df['URL'] = df['URL'].str.replace('http://', '') # replace with nothing

Again, unlike Excel, regex can be used – like with Google Sheets’ REGEXREPLACE:

df['URL'] = df['URL'].str.replace('http://|https://', '')

Alternatively, if you want to replace multiple substrings with different values, you can use Python’s replace method and provide a list.

This prevents you from having to chain multiple str.replace functions:

df['URL'] = df['URL'].replace(['http://', ' https://'], ['https://www.', 'https://www.’], regex=True)

LEFT/MID/RIGHT

Extracting a substring within Excel requires the usage of the LEFT, MID, or RIGHT functions, depending on where the substring is located within a cell.

Let’s say we want to extract the root domain and subdomain from a URL:

=MID(A2,FIND(":",A2,4)+3,FIND("/",A2,9)-FIND(":",A2,4)-3)
left mid right ExcelScreenshot from Microsoft Excel, November 2022

Using a combination of MID and multiple FIND functions, this formula is ugly, to say the least – and things get a lot worse for more complex extractions.

Again, Google Sheets does this better than Excel, because it has REGEXEXTRACT.

What a shame that when you feed it larger datasets, it melts faster than a Babybel on a hot radiator.

Thankfully, Pandas offers str.extract, which works in a similar way:

df['Domain'] = df['URL'].str.extract('.*://?([^/]+)')
str extract PythonScreenshot from VS Code, November 2022

Combine with fillna to prevent null values, as you would in Excel with IFERROR:

df['Domain'] = df['URL'].str.extract('.*://?([^/]+)').fillna('-')

If

IF statements allow you to return different values, depending on whether or not a condition is met.

To illustrate, suppose that we want to create a label for keywords that are ranking within the top three positions.

Excel IFScreenshot from Microsoft Excel, November 2022

Rather than using Pandas in this instance, we can lean on NumPy and the where function (remember to import NumPy, if you haven’t already):

df['Top 3'] = np.where(df['Position'] <= 3, 'Top 3', 'Not Top 3')

Multiple conditions can be used for the same evaluation by using the AND/OR operators, and enclosing the individual criteria within round brackets:

df['Top 3'] = np.where((df['Position'] <= 3) & (df['Position'] != 0), 'Top 3', 'Not Top 3')

In the above, we’re returning “Top 3” for any keywords with a ranking less than or equal to three, excluding any keywords ranking in position zero.

IFS

Sometimes, rather than specifying multiple conditions for the same evaluation, you may want multiple conditions that return different values.

In this case, the best solution is using IFS:

=IFS(B2<=3,"Top 3",B2<=10,"Top 10",B2<=20,"Top 20")
IFS ExcelScreenshot from Microsoft Excel, November 2022

Again, NumPy provides us with the best solution when working with dataframes, via its select function.

With select, we can create a list of conditions, choices, and an optional value for when all of the conditions are false:

conditions = [df['Position'] <= 3, df['Position'] <= 10, df['Position'] <=20]

choices = ['Top 3', 'Top 10', 'Top 20']

df['Rank'] = np.select(conditions, choices, 'Not Top 20')

It’s also possible to have multiple conditions for each of the evaluations.

Let’s say we’re working with an ecommerce retailer with product listing pages (PLPs) and product display pages (PDPs), and we want to label the type of branded pages ranking within the top 10 results.

The easiest solution here is to look for specific URL patterns, such as a subfolder or extension, but what if competitors have similar patterns?

In this scenario, we could do something like this:

conditions = [(df['URL'].str.contains('/category/')) & (df['Brand Rank'] > 0),
(df['URL'].str.contains('/product/')) & (df['Brand Rank'] > 0),
(~df['URL'].str.contains('/product/')) & (~df['URL'].str.contains('/category/')) & (df['Brand Rank'] > 0)]

choices = ['PLP', 'PDP', 'Other']

df['Brand Page Type'] = np.select(conditions, choices, None)

Above, we’re using str.contains to evaluate whether or not a URL in the top 10 matches our brand’s pattern, then using the “Brand Rank” column to exclude any competitors.

In this example, the tilde sign (~) indicates a negative match. In other words, we’re saying we want every brand URL that doesn’t match the pattern for a “PDP” or “PLP” to match the criteria for ‘Other.’

Lastly, None is included because we want non-brand results to return a null value.

np select PythonScreenshot from VS Code, November 2022

VLOOKUP

VLOOKUP is an essential tool for joining together two distinct datasets on a common column.

In this case, adding the URLs within column N to the keyword, position, and search volume data in columns A-C, using the shared “Keyword” column:

=VLOOKUP(A2,M:N,2,FALSE)
vlookup ExcelScreenshot from Microsoft Excel, November 2022

To do something similar with Pandas, we can use merge.

Replicating the functionality of an SQL join, merge is an incredibly powerful function that supports a variety of different join types.

For our purposes, we want to use a left join, which will maintain our first dataframe and only merge in matching values from our second dataframe:

mergeddf = df.merge(df2, how='left', on='Keyword')

One added advantage of performing a merge over a VLOOKUP, is that you don’t have to have the shared data in the first column of the second dataset, as with the newer XLOOKUP.

It will also pull in multiple rows of data rather than the first match in finds.

One common issue when using the function is for unwanted columns to be duplicated. This occurs when multiple shared columns exist, but you attempt to match using one.

To prevent this – and improve the accuracy of your matches – you can specify a list of columns:

mergeddf = df.merge(df2, how='left', on=['Keyword', 'Search Volume'])

In certain scenarios, you may actively want these columns to be included. For instance, when attempting to merge multiple monthly ranking reports:

mergeddf = df.merge(df2, on='Keyword', how='left', suffixes=('', '_october'))
    .merge(df3, on='Keyword', how='left', suffixes=('', '_september'))

The above code snippet executes two merges to join together three dataframes with the same columns – which are our rankings for November, October, and September.

By labeling the months within the suffix parameters, we end up with a much cleaner dataframe that clearly displays the month, as opposed to the defaults of _x and _y seen in the earlier example.

multi merge PythonScreenshot from VS Code, November 2022

COUNTIF/SUMIF/AVERAGEIF

In Excel, if you want to perform a statistical function based on a condition, you’re likely to use either COUNTIF, SUMIF, or AVERAGEIF.

Commonly, COUNTIF is used to determine how many times a specific string appears within a dataset, such as a URL.

We can accomplish this by declaring the ‘URL’ column as our range, then the URL within an individual cell as our criteria:

=COUNTIF(D:D,D2)
Excel countifScreenshot from Microsoft Excel, November 2022

In Pandas, we can achieve the same outcome by using the groupby function:

df.groupby('URL')['URL'].count()
Python groupbyScreenshot from VS Code, November 2022

Here, the column declared within the round brackets indicates the individual groups, and the column listed in the square brackets is where the aggregation (i.e., the count) is performed.

The output we’re receiving isn’t perfect for this use case, though, because it’s consolidated the data.

Typically, when using Excel, we’d have the URL count inline within our dataset. Then we can use it to filter to the most frequently listed URLs.

To do this, use transform and store the output in a column:

df['URL Count'] = df.groupby('URL')['URL'].transform('count')
Python groupby transformScreenshot from VS Code, November 2022

You can also apply custom functions to groups of data by using a lambda (anonymous) function:

df['Google Count'] = df.groupby(['URL'])['URL'].transform(lambda x: x[x.str.contains('google')].count())

In our examples so far, we’ve been using the same column for our grouping and aggregations, but we don’t have to. Similarly to COUNTIFS/SUMIFS/AVERAGEIFS in Excel, it’s possible to group using one column, then apply our statistical function to another.

Going back to the earlier search engine results page (SERP) example, we may want to count all ranking PDPs on a per-keyword basis and return this number alongside our existing data:

df['PDP Count'] = df.groupby(['Keyword'])['URL'].transform(lambda x: x[x.str.contains('/product/|/prd/|/pd/')].count())
Python groupby countifsScreenshot from VS Code, November 2022

Which in Excel parlance, would look something like this:

=SUM(COUNTIFS(A:A,[@Keyword],D:D,{"*/product/*","*/prd/*","*/pd/*"}))

Pivot Tables

Last, but by no means least, it’s time to talk pivot tables.

In Excel, a pivot table is likely to be our first port of call if we want to summarise a large dataset.

For instance, when working with ranking data, we may want to identify which URLs appear most frequently, and their average ranking position.

pivot table ExcelScreenshot from Microsoft Excel, November 2022

Again, Pandas has its own pivot tables equivalent – but if all you want is a count of unique values within a column, this can be accomplished using the value_counts function:

count = df['URL'].value_counts()

Using groupby is also an option.

Earlier in the article, performing a groupby that aggregated our data wasn’t what we wanted – but it’s precisely what’s required here:

grouped = df.groupby('URL').agg(
     url_frequency=('Keyword', 'count'),
     avg_position=('Position', 'mean'),
     )

grouped.reset_index(inplace=True)
groupby-pivot PythonScreenshot from VS Code, November 2022

Two aggregate functions have been applied in the example above, but this could easily be expanded upon, and 13 different types are available.

There are, of course, times when we do want to use pivot_table, such as when performing multi-dimensional operations.

To illustrate what this means, let’s reuse the ranking groupings we made using conditional statements and attempt to display the number of times a URL ranks within each group.

ranking_groupings = df.groupby(['URL', 'Grouping']).agg(
     url_frequency=('Keyword', 'count'),
     )
python groupby groupingScreenshot from VS Code, November 2022

This isn’t the best format to use, as multiple rows have been created for each URL.

Instead, we can use pivot_table, which will display the data in different columns:

pivot = pd.pivot_table(df,
index=['URL'],
columns=['Grouping'],
aggfunc="size",
fill_value=0,
)
pivot table PythonScreenshot from VS Code, November 2022

Final Thoughts

Whether you’re looking for inspiration to start learning Python, or are already leveraging it in your SEO workflows, I hope that the above examples help you along on your journey.

As promised, you can find a Google Colab notebook with all of the code snippets here.

In truth, we’ve barely scratched the surface of what’s possible, but understanding the basics of Python data analysis will give you a solid base upon which to build.

More resources:


Featured Image: mapo_japan/Shutterstock



Source link

Continue Reading

DON'T MISS ANY IMPORTANT NEWS!
Subscribe To our Newsletter
We promise not to spam you. Unsubscribe at any time.
Invalid email address

Trending

en_USEnglish