Connect with us

MARKETING

Should you build or buy a customer data platform?

Published

on

Should you build or buy a customer data platform?

“Build versus buy” in the context of technology marketplaces is a long-running debate. At Real Story Group, we see this debate getting revisited for marketing tech stacks, particularly for customer data platforms (CDPs).

Is there a single right approach? I don’t think so, but the details matter here.  So let’s dig in.

Build vs. buy

Traditionally, two main approaches for obtaining enterprise functionality have been:

  1. Buying an off-the-shelf package and then customizing it for specific needs.
  2. Building a platform in-house, specifically for your requirements, sometimes via packaged piece parts.

Both approaches have valid rationales, and over the past two decades as an industry analyst, I’ve seen this choice emerge in pretty much all technology marketplaces. However, the boundaries between build and buy in CDPs can become fuzzier.

Part of the challenge is that packaged CDPs can vary substantially in scope. Some have great vertical depth, reaching back into the enterprise to perform upstream data processing or extending forward to the engagement tier to provide real-time interaction. Some packaged CDPs offer lateral services around orchestration, campaign management and even outbound messaging.

So before deciding on the right approach, it is important to answer what a CDP will do specifically for your enterprise.

What does a CDP do (for you)?

Should you build or buy a customer data platform
RSG’s enterprise service model for customer data.  Source: Real Story Group

The model shows different stages in a data life cycle, regardless of specific technology platform. Your customer data probably goes through all these stages:

  1. You need to obtain data from various online and offline data sources before you can do anything with it. Therefore, you need some mechanism to ingest data, clean it, perform some transformations and aggregation, and ensure quality.
  2. Once the data is collected or ingested from different sources, you need to tie it to user profiles. That includes activities such as identity resolution and profile unification. You also enrich your profiles with additional data while ensuring data governance and compliance.

In a larger organization, these two initial phases typically transpire within part of a broader enterprise data “fabric” or “mesh.” The typical enterprise already possesses data management tooling to handle these services – like data lakes, warehouses, ETL tools, quality and governance, etc. – and applies them to customer data. However, as we’ll see below, many packaged CDP tools also provide some of these services. In any case, enterprise IT and Data teams become important stakeholders in these first two stages.

  • The next stage is where you use all this cleaned-up, aggregated, unified profile data for your business objectives. For example, now that you have profiles or 360-degree views of your users or customers, you can segment them based on different attributes. You can slice and dice the profiles, create cohorts, group similar data, create audiences and so forth – and then, critically, activate that data through various channels.
  • This stage is the last mile where you engage with your customers via e-commerce, email, web, mobile, chat or other channels, using personalized content and product recommendations.

You see considerably higher marketing and customer experience teams’ involvement in these latter two stages.

In theory, all these services can be potentially addressed by a CDP. You will often find CDP vendors boasting they can perform all these stages equally well.

In practice, though, we see several variations of this model. See, for example, the different scopes for Company A, B and C in the diagram. Rarely do large, complex enterprises deploy a single platform for all these stages. There are at least two reasons for that:

  1. As you can see, the overall potential functionality is quite broad, and large enterprises already have existing initiatives outside of CDP for several of the stages (or functionalities within those stages) identified above. These functionalities often include data pipeline management, machine learning ops, and identity resolution, to name just a few.
  2. Despite what vendors claim, the truth is they are never equally good at all these stages. They can usually do only one or two of these stages well.

Therefore, where a CDP fits in your martech stack could differ from where it fits for another company. This then affects any build versus buy decision since the question initially becomes: build or buy precisely what? Even if you license an off-the-shelf CDP for some functionality within the model above, you will likely build extensions for missing capabilities.

So the first lesson: you will likely do some build and some buy, regardless of the overall strategy. The question then becomes: in what proportions?


Get the daily newsletter digital marketers rely on.


Assembling from piece parts

One approach potentially open to you is assembling components to build CDP capabilities instead of developing from scratch or buying a more wide-ranging, general-purpose CDP off-the-shelf.

This approach has some appeal because you may already possess some powerful data management capabilities as part of your broader customer data fabric.

You can also license specific products for these different functionalities. Several vendors offer components for such functionality. For example:

  • Data ingestion: There are specialized data ingestion vendors and modules from CDP vendors themselves. Vendors such as Stitch (acquired by Talend), Snowplow, Fivetran, Matillion and others provide modules for data ingestion, data pipeline management, transformations and other relevant functionality.
  • ETL and ELT: Many vendors target Extract-Transform-Load (ETL), Extract-Load-Transform (ELT) and Reverse-ETL/ELT for different types of transformations that you can do with your raw data. Examples of vendors in this category are Hevo Data, Hightouch, DBT and Census.
  • Data warehouses and Data Lakes: Several data warehouses and data lakes, including Snowflake, Google and others, include data management and processing functionality. Many packaged CDP architectures already assume that source data will come from this environment.
  • “Virtual” CDPs: Some vendors, such as Aqfer, Rudderstack, and some other players, offer some services for cobbling together a CDP with a decoupled data layer.
  • Identity Resolution: Several vendors target identity resolution. Many CDPs have now given up their own identity resolution efforts instead of partnering with vendors such as Neustar, Infutor,  LiveRamp, and others.
  • Engagement: The marketplace for engagement-oriented products remains quite vibrant. You can find many point solutions that target journey orchestration, campaign management, personalization, recommendations and other engagement use cases. Several packaged CDPs are also strong in this area.

This isn’t an exhaustive list of services, and you can find many other specialized vendors (e.g., those providing governance solutions). The key point is that it is possible to assemble these services to have a composable data ecosystem instead of doing everything using a single CDP.

Read next: Deep changes in the CDP space

What you might miss

By now, you’ve probably figured out that a couple of key CDP services are missing from that list above: business-friendly segmentation and activation. These are more challenging capabilities to purchase off the shelf, and at RSG, when we’ve seen home-grown CDPs, typically, the enterprise will build these business-user interfaces from scratch. When we hear enterprise developers arguing, “let’s just employ our data warehouse as the data layer instead of a CDP,” this is typically where they are headed.

I would caution you about this approach, though, because custom segmentation and activation tooling could prove fragile, and advanced UX design is a big part of what you pay for in a CDP (though to be sure: not all CDPs are equally good at this).

What you should do

Recognize that your CDP effort will undoubtedly include some measures of both build and buy. It’s just a question of proportion and location. Even if you license a packaged CDP – and there are good reasons to do so – you will need ample development work to stitch it into the rest of your customer data fabric, let alone your front-line engagement systems.

The jury remains out on a single best approach for this, but design patterns are emerging. Consult this briefing for more details.

In the meantime, as you look to build your customer data management muscles over the next year, keep your data scientists close but your developers even closer.

Customer data platforms: A snapshot

What they are. Customer data platforms, or CDPs, have become more prevalent than ever. These help marketers identify key data points from customers across a variety of platforms, which can help craft cohesive experiences. They are especially hot right now as marketers face increasing pressure to provide a unified experience to customers across many channels. 

Understanding the need. Cisco’s Annual Internet Report found that internet-connected devices are growing at a 10% compound annual growth rate (CAGR) from 2018 to 2023. COVID-19 has only sped up this marketing transformation. Technologies are evolving at a faster rate to connect with customers in an ever-changing world.

Each of these interactions has something important in common: they’re data-rich. Customers are telling brands a little bit about themselves at every touchpoint, which is invaluable data. What’s more, consumers expect companies to use this information to meet their needs.

Why we care. Meeting customer expectations, breaking up these segments, and bringing them together can be demanding for marketers. That’s where CDPs come in. By extracting data from all customer touchpoints — web analytics, CRMs, call analytics, email marketing platforms, and more — brands can overcome the challenges posed by multiple data platforms and use the information to improve customer experiences. 

Read next: What is a CDP and how does it give marketers the coveted ‘single view’ of their customers? 


Opinions expressed in this article are those of the guest author and not necessarily MarTech. Staff authors are listed here.


About The Author

1644511373 403 Should you build or buy a customer data platform
Apoorv Durga is Vice-President, Research & Advisory at analyst firm Real Story Group, where he covers CDPs, e-commerce, Web CMS, and technologies. He is a two-decade veteran in the marketing technology space.


Source link

Keep an eye on what we are doing
Be the first to get latest updates and exclusive content straight to your email inbox.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address

MARKETING

YouTube Ad Specs, Sizes, and Examples [2024 Update]

Published

on

YouTube Ad Specs, Sizes, and Examples

Introduction

With billions of users each month, YouTube is the world’s second largest search engine and top website for video content. This makes it a great place for advertising. To succeed, advertisers need to follow the correct YouTube ad specifications. These rules help your ad reach more viewers, increasing the chance of gaining new customers and boosting brand awareness.

Types of YouTube Ads

Video Ads

  • Description: These play before, during, or after a YouTube video on computers or mobile devices.
  • Types:
    • In-stream ads: Can be skippable or non-skippable.
    • Bumper ads: Non-skippable, short ads that play before, during, or after a video.

Display Ads

  • Description: These appear in different spots on YouTube and usually use text or static images.
  • Note: YouTube does not support display image ads directly on its app, but these can be targeted to YouTube.com through Google Display Network (GDN).

Companion Banners

  • Description: Appears to the right of the YouTube player on desktop.
  • Requirement: Must be purchased alongside In-stream ads, Bumper ads, or In-feed ads.

In-feed Ads

  • Description: Resemble videos with images, headlines, and text. They link to a public or unlisted YouTube video.

Outstream Ads

  • Description: Mobile-only video ads that play outside of YouTube, on websites and apps within the Google video partner network.

Masthead Ads

  • Description: Premium, high-visibility banner ads displayed at the top of the YouTube homepage for both desktop and mobile users.

YouTube Ad Specs by Type

Skippable In-stream Video Ads

  • Placement: Before, during, or after a YouTube video.
  • Resolution:
    • Horizontal: 1920 x 1080px
    • Vertical: 1080 x 1920px
    • Square: 1080 x 1080px
  • Aspect Ratio:
    • Horizontal: 16:9
    • Vertical: 9:16
    • Square: 1:1
  • Length:
    • Awareness: 15-20 seconds
    • Consideration: 2-3 minutes
    • Action: 15-20 seconds

Non-skippable In-stream Video Ads

  • Description: Must be watched completely before the main video.
  • Length: 15 seconds (or 20 seconds in certain markets).
  • Resolution:
    • Horizontal: 1920 x 1080px
    • Vertical: 1080 x 1920px
    • Square: 1080 x 1080px
  • Aspect Ratio:
    • Horizontal: 16:9
    • Vertical: 9:16
    • Square: 1:1

Bumper Ads

  • Length: Maximum 6 seconds.
  • File Format: MP4, Quicktime, AVI, ASF, Windows Media, or MPEG.
  • Resolution:
    • Horizontal: 640 x 360px
    • Vertical: 480 x 360px

In-feed Ads

  • Description: Show alongside YouTube content, like search results or the Home feed.
  • Resolution:
    • Horizontal: 1920 x 1080px
    • Vertical: 1080 x 1920px
    • Square: 1080 x 1080px
  • Aspect Ratio:
    • Horizontal: 16:9
    • Square: 1:1
  • Length:
    • Awareness: 15-20 seconds
    • Consideration: 2-3 minutes
  • Headline/Description:
    • Headline: Up to 2 lines, 40 characters per line
    • Description: Up to 2 lines, 35 characters per line

Display Ads

  • Description: Static images or animated media that appear on YouTube next to video suggestions, in search results, or on the homepage.
  • Image Size: 300×60 pixels.
  • File Type: GIF, JPG, PNG.
  • File Size: Max 150KB.
  • Max Animation Length: 30 seconds.

Outstream Ads

  • Description: Mobile-only video ads that appear on websites and apps within the Google video partner network, not on YouTube itself.
  • Logo Specs:
    • Square: 1:1 (200 x 200px).
    • File Type: JPG, GIF, PNG.
    • Max Size: 200KB.

Masthead Ads

  • Description: High-visibility ads at the top of the YouTube homepage.
  • Resolution: 1920 x 1080 or higher.
  • File Type: JPG or PNG (without transparency).

Conclusion

YouTube offers a variety of ad formats to reach audiences effectively in 2024. Whether you want to build brand awareness, drive conversions, or target specific demographics, YouTube provides a dynamic platform for your advertising needs. Always follow Google’s advertising policies and the technical ad specs to ensure your ads perform their best. Ready to start using YouTube ads? Contact us today to get started!

Keep an eye on what we are doing
Be the first to get latest updates and exclusive content straight to your email inbox.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
Continue Reading

MARKETING

Why We Are Always ‘Clicking to Buy’, According to Psychologists

Published

on

Why We Are Always 'Clicking to Buy', According to Psychologists

Amazon pillows.

(more…)

Keep an eye on what we are doing
Be the first to get latest updates and exclusive content straight to your email inbox.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
Continue Reading

MARKETING

A deeper dive into data, personalization and Copilots

Published

on

A deeper dive into data, personalization and Copilots

Salesforce launched a collection of new, generative AI-related products at Connections in Chicago this week. They included new Einstein Copilots for marketers and merchants and Einstein Personalization.

To better understand, not only the potential impact of the new products, but the evolving Salesforce architecture, we sat down with Bobby Jania, CMO, Marketing Cloud.

Dig deeper: Salesforce piles on the Einstein Copilots

Salesforce’s evolving architecture

It’s hard to deny that Salesforce likes coming up with new names for platforms and products (what happened to Customer 360?) and this can sometimes make the observer wonder if something is brand new, or old but with a brand new name. In particular, what exactly is Einstein 1 and how is it related to Salesforce Data Cloud?

“Data Cloud is built on the Einstein 1 platform,” Jania explained. “The Einstein 1 platform is our entire Salesforce platform and that includes products like Sales Cloud, Service Cloud — that it includes the original idea of Salesforce not just being in the cloud, but being multi-tenancy.”

Data Cloud — not an acquisition, of course — was built natively on that platform. It was the first product built on Hyperforce, Salesforce’s new cloud infrastructure architecture. “Since Data Cloud was on what we now call the Einstein 1 platform from Day One, it has always natively connected to, and been able to read anything in Sales Cloud, Service Cloud [and so on]. On top of that, we can now bring in, not only structured but unstructured data.”

That’s a significant progression from the position, several years ago, when Salesforce had stitched together a platform around various acquisitions (ExactTarget, for example) that didn’t necessarily talk to each other.

“At times, what we would do is have a kind of behind-the-scenes flow where data from one product could be moved into another product,” said Jania, “but in many of those cases the data would then be in both, whereas now the data is in Data Cloud. Tableau will run natively off Data Cloud; Commerce Cloud, Service Cloud, Marketing Cloud — they’re all going to the same operational customer profile.” They’re not copying the data from Data Cloud, Jania confirmed.

Another thing to know is tit’s possible for Salesforce customers to import their own datasets into Data Cloud. “We wanted to create a federated data model,” said Jania. “If you’re using Snowflake, for example, we more or less virtually sit on your data lake. The value we add is that we will look at all your data and help you form these operational customer profiles.”

Let’s learn more about Einstein Copilot

“Copilot means that I have an assistant with me in the tool where I need to be working that contextually knows what I am trying to do and helps me at every step of the process,” Jania said.

For marketers, this might begin with a campaign brief developed with Copilot’s assistance, the identification of an audience based on the brief, and then the development of email or other content. “What’s really cool is the idea of Einstein Studio where our customers will create actions [for Copilot] that we hadn’t even thought about.”

Here’s a key insight (back to nomenclature). We reported on Copilot for markets, Copilot for merchants, Copilot for shoppers. It turns out, however, that there is just one Copilot, Einstein Copilot, and these are use cases. “There’s just one Copilot, we just add these for a little clarity; we’re going to talk about marketing use cases, about shoppers’ use cases. These are actions for the marketing use cases we built out of the box; you can build your own.”

It’s surely going to take a little time for marketers to learn to work easily with Copilot. “There’s always time for adoption,” Jania agreed. “What is directly connected with this is, this is my ninth Connections and this one has the most hands-on training that I’ve seen since 2014 — and a lot of that is getting people using Data Cloud, using these tools rather than just being given a demo.”

What’s new about Einstein Personalization

Salesforce Einstein has been around since 2016 and many of the use cases seem to have involved personalization in various forms. What’s new?

“Einstein Personalization is a real-time decision engine and it’s going to choose next-best-action, next-best-offer. What is new is that it’s a service now that runs natively on top of Data Cloud.” A lot of real-time decision engines need their own set of data that might actually be a subset of data. “Einstein Personalization is going to look holistically at a customer and recommend a next-best-action that could be natively surfaced in Service Cloud, Sales Cloud or Marketing Cloud.”

Finally, trust

One feature of the presentations at Connections was the reassurance that, although public LLMs like ChatGPT could be selected for application to customer data, none of that data would be retained by the LLMs. Is this just a matter of written agreements? No, not just that, said Jania.

“In the Einstein Trust Layer, all of the data, when it connects to an LLM, runs through our gateway. If there was a prompt that had personally identifiable information — a credit card number, an email address — at a mimum, all that is stripped out. The LLMs do not store the output; we store the output for auditing back in Salesforce. Any output that comes back through our gateway is logged in our system; it runs through a toxicity model; and only at the end do we put PII data back into the answer. There are real pieces beyond a handshake that this data is safe.”

Source link

Keep an eye on what we are doing
Be the first to get latest updates and exclusive content straight to your email inbox.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
Continue Reading

Trending